Remarkable Stabilities, Geometries, and Electronic States of Lithium-Substituted Carbenium Ions, $CLi_{3-n}H_n^+$ (n = 0-3), and the Corresponding Radicals

Jayaraman Chandrasekhar,[‡] John A. Pople,[†] Rolf Seeger,[§] Ute Seeger,[§] and Paul von Ragué Schlever*[‡]

Contribution from the Institut für Organische Chemie der Friedrich-Alexander-Universität Erlangen-Nürnberg, D-8520 Erlangen, Federal Republic of Germany, Fachbereich Chemie der Universität, D-6750 Kaiserslautern, Federal Republic of Germany, and Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213. Received June 12, 1981

Abstract: The thermodynamic stability of the CLi₃⁺ cation is extraordinary. The low experimental gas-phase ionization potential (IP) of CLi₃ (4.6 \pm 0.3 eV) can be compared with the IP's of Li (5.3), Na (5.1), K (4.3), and CH₂N($\overline{CH_3}$)₂ (5.7 eV). Furthermore, the geometry and electronic structure of CLi3⁺ also are unusual: molecular orbital theory including electron correlation predicts CLi₃⁺ to prefer a C_{2n} Jahn-Teller distorted geometry and a triplet ground state. This triplet preference is attributed to multicenter delocalization of the π electron; CHLi₂⁺ is similar, but CH₂Li⁺ and CH₃⁺ are indicated to have singlet ground states. Parallel studies on the neutral $CLi_{n}H_{1-n}$ species lead to a satisfactory reproduction of the experimentally observed lowering of the radical IP's (from 9.8 eV for CH₃ to 4.6 eV for CLi₃). Lithium is a remarkably effective stabilizing substituent for carbenium ions, comparable to NH₂ in this respect. Thus, the stabilization energies (relative to CH_3^+) of CLi_3^+ and the guanidinium ion, $C(NH_2)_3^+$, are comparable. The corresponding radicals are also stabilized by lithium substitution.

Introduction

When lithium vapor above 970 K is allowed to permeate through a graphite membrane, CLi₃ is produced.¹ Its ionization potential to give CLi₃⁺ was determined to be remarkably low, 4.6 \pm 0.3 eV.² As part of a continuing research program on the nature of compounds of carbon and lithium,3 we have now investigated by means of theoretical calculations the nature of CLi₃, CLi₃⁺, and their lower homologues where one or more lithium atoms have been replaced by hydrogens. Only a few of these species have been examined previously.^{3d,e,j}

The electronic structures of the lithiated carbocations pose alternatives not normally considered. Take CH_3^+ as a model. The familiar molecular orbitals utilized are shown in Figure 1.⁴ The HOMO is a doubly degenerate set of σ bonding MOs and the LUMO is a nonbonding π orbital concentrated on the central atom. Therefore, CH_3^+ prefers to be a ground state D_{3h} singlet. But what about CH₃⁺ triplet excited states?⁵ Jahn-Teller distortion away from D_{3k} symmetry is expected. Two C_{2k} forms are possible. In both, the π orbital is singly occupied, but the other singly occupied orbital is either $\sigma_{\rm S}$ (a₁) or $\sigma_{\rm A}$ (b₂). These ³B₁ and ${}^{3}A_{2}$ triplet methyl cations are not competitive with the singlet in energy.⁵ However, the situation can be quite different when the hydrogens in CH_3^+ are replaced by lithium. Since the C-Li σ bond is relatively weak, the $\sigma_{\rm S}$ and $\sigma_{\rm A}$ orbitals of singlet CLi₃⁺ lie high in energy. The π orbital, on the other hand, is stabilized through $p\pi - p\pi$ interaction between carbon and lithium.³ Both these effects might lead to a π occupancy and a preferential stabilization of the triplet form. Lithiomethyl cations could thus be prototypes of carbenium ions with triplet ground states. There are precedents for such unusual electronic structures; triplet forms of $\hat{C}H_2Li_2$, ^{3a,6} $H_2C = CLi_2$, ^{3m,7} etc., are found calculationally to be the ground states of these species.

Computational Details

Ab initio calculations were carried out on the cation series, CH3+, CH₂Li⁺, CHLi₂⁺, and CLi₃⁺, and on the corresponding radicals. Geometries were optimized at the restricted Hartree-Fock (RHF) level for singlet states and the unrestricted Hartree-Fock (UHF) level⁸ for doublets and triplets. The highest level basis set used was $6-31G^{*9}$ (split-valence including d functions on first-row atoms).9 The larger systems, CLi_3^+ and CLi_3 , were optimized only at the split-valence levels, 3-21G¹⁰ or 4-31G (5-21G for lithium is implied).¹¹ Nonplanar structures were examined, but none were found to be local minima. (However, see Note Added in Proof.)

Table I lists the energies and Table II the geometries of the optimized structures. These geometries were used in subsequent single-point calculations with the 6-31G** basis set (which includes p functions on hydrogen).9 The resulting energies are designated "HF" in Table III. Corrections for electron correlation were evaluated using Møller-Plesset perturbation theory¹² with the 4-31G (Table I) and 6-31G** (Table III)

(1) Wu, C. H.; Ihle, H. R. Chem. Phys. Lett. **1979**, 61, 54. Also, CLi_3^+ and $CHLi_2^+$ have been detected mass spectroscopically via the flash vaporization of polylithium compounds (Gurak, J. A.; Chinn, J. W., Jr.; Lagow, R. J. J. Am. Chem. Soc., submitted for publication; Lagow, R. J., private communication).

(2) Ster Table IV and discussion below.
(3) (a) Apeloig, Y.; Schleyer, P. v. R.; Binkley, J. S.; Pople, J. A. J. Am. Chem. Soc. 1976, 98, 4332. (b) Apeloig, Y.; Schleyer, P. v. R.; Binkley, J. S.; Pople, J. A.; Jorgensen, W. L. Tetrahedron Lett. 1976, 3923. (c) Collins, J. B.; Dill, J. D.; Jemmis, E. D.; Apeloig, Y.; Schleyer, P. v. R.; Pople, J. A.; Seeger, R. J. Am. Chem. Soc. 1976, 98, 5419. (d) Apeloig, Y.; Schleyer, P. v. R.; Pople, J. A. J. Am. Chem. Soc. 1977, 99, 1291. (f) Jemmis, E. D.; Poppinger, D.; Schleyer, P. v. R.; Pople, J. A. Ibid. 1977, 99, 5796. (g) Rauscher, G.; Clark, T.; Poppinger, D.; Schleyer, P. v. R.; Angew. Chem. 1978, 90, 306. (h) Jemmis, E. D.; Schleyer, P. v. R.; Pople, J. A. J. Organomet. Chem. 1978, 154, 327. (i) Clark, T.; Schleyer, P. v. R.; Pople, J. A. J. Chem. Soc., Chem. Commun. 1978, 137. (j) Jemmis, E. D.; Chandrasekhar, J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1979, 101, 527. (k) Jemmis, E. D.; Chandrasekhar, J.; Schleyer, P. v. R. Ibid. 1979, 101, 2848. (1) Kos, A.; Poppinger, D.; Schleyer, P. v. R.; Thiel, W. Tetrahedron Lett. 1980, 21, 2151. (m) Apeloig, Y.; Clark, T.; Kos, A.; Jemmis, E. D.; Schleyer, P. v. R. Isr. J. Chem. 1980, 20, 43. (n) Kos, A.; Schleyer, P. v. R.; J. Am. Chem. Soc. 1980, 102, 7928. (o) Kos, A.; Jemmis, E. D.; Schleyer, P. v. R.; Gleiter, R.; Fischbach, U.; Pople, J. A. Ibid. 1981, 103, 4996. (p) Schleyer, P. v. R.; Kos, A. J. J. Chem. Pople, J. A. Ibid. 1981, 103, 4996. (p) Schleyer, P. v. R.; Kos, A. J. J. Chem.

A. Iola, 1981, 105, 4950. (p) Schleyel, F. V. K., Ros, A. J. J. Chem. Soc., Chem. Commun. 1982, 448.
(4) Jorgensen, W. L.; Salem, L. "The Organic Chemists Book of Orbitals";
Academic Press: New York, 1973. Gimarc, B. M. Acc. Chem. Res. 1974, 7, 384. Gimarc, B. M. "Molecular Structure and Bonding. The Qualitative Dependence of the Communicative and Bonding. Molecular Orbital Approach"; Academic Press: New York, 1979.
(5) Krishnan, R.; Whiteside, R. A.; Pople, J. A.; Schleyer, P. v. R. J. Am.

Chem. Soc. 1981, 103, 5649. Triplet CH_3^+ has been inferred in the gas phase

Chem. Soc. 1981, 103, 5649. 1 Hpiet CH₃⁻ has been interred in the gas phase (Schwarz, H., private communication).
(6) Laidig, W. D.; Schaefer, H. F., III J. Am. Chem. Soc. 1978, 100, 5872.
(7) Laidig, W. D.; Schaefer, H. F., III J. Am. Chem. Soc. 1979, 101, 7184.
(8) Pople, J. A.; Nesbet, R. K. J. Chem. Phys. 1954, 22, 571.
(9) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
(10) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 920. 102. 939.

102, 939. (11) The Gaussian 76 program with the standard basis sets was used: Binkley, J. S.; Whiteside, R. A.; Hariharan, P.; Seeger, R.; Pople, J. A.; Hehre, W. J.; Newton, M. D. QCPE 1979, 11, 368. Higher level calculations em-ployed the Gaussian 80 CMU program; Binkley, J. S.; Whiteside, R.; Krishnan, R.; Seeger, R.; Schlegel, H. B.; DeFrees, D. J.; Topiol, S.; Kahn, L. R.; Pople, J. A. *Ibid.* 1981, 11, 406. The computations at Kaiserslautern were carried out with a Perkin-Elmer 8/32 applying parallel processing techniques (see Seeger, R. J. Comput. Chem. 1981, 2, 168).

[†]Universität Erlangen-Nürnberg. [†]Carnegie-Mellon University.

[§] Universität Kaiserslautern.

⁽²⁾ See Table IV and discussion below.

Table I. Hartree-Fock and MP2/4-31G Energies of Optimized CH_nLi_{3-n} Ions and Radicals^a

species	state	3-21G//3-21G	4-31G//4-31G	6-31G*//6-31G*	MP2/4-31G/HF/4-31G	
CH ₃ ⁺	$^{1}A_{1}'(D_{3h})$	-39.00913 (0.0)	-39.17512 (0.0)	-39.23064 (0.0)	-39.24205 (0.0)	
•	${}^{3}B_{1}(C_{2\nu})$	-38.87299 (85.4)	-39.03684 (86.8)	-39.09016 (88.2)	-39.09237 (93.9)	
	${}^{3}A_{2}(C_{2\nu})$	-38.86934 (87.7)	-39.03474 (88.1)	-39.09095 (87.8)	- 39.09304 (93.5)	
CH ₃	${}^{2}A_{2}(D_{3h})$	-39.34261	- 39.50497	- 39.55899	е	
CH, Li⁺	${}^{1}A_{1}(C_{2\nu})$	-45.91361 (2.9)	-46.11907 (3.1)	-46.17551 (1.7)	-46.18643 (0.0)	
-	${}^{3}B_{1}(C_{2})$	-45.91830 (0.0)	-46.12401 (0.0)	-46.17782 (0.0)	-46.17971 (4.2)	
CH, Li	$^{2}B_{1}(C_{2\nu})$	-46.13337	-46.33894	-46.39468	-46.42029	
CHLi,⁺	$^{1}A_{1}(C_{2})$	-52.76156 (23.6)	-53.00844 (23.6)	-53.06196 (24.1)	-53.07837(15.8)	
-	${}^{3}A_{2}(C_{2})$	-52.79923 (0.0)	-53.04610 (0.0)	-53.10019 (0.0)	-53.10358 (0.0)	
CHLi,	${}^{2}B_{1}(C_{2}v)$		53.19459	-53.25101	-53.25323	
CLi ₃ +	$^{1}A_{1}(D_{3h})$	-59.58603 (22.5)	-59.87562 (22.2)	-59.92557^{b} (23.5)	-59.95459 (13.3)	
Ū	${}^{3}B_{1}(C_{2n})$	-59.62178 (0.0)	-59.91093 (0.0)	$-59.96309^{b}(0.0)$	-59.97571 (0.0)	
	${}^{3}A_{2}(C_{2})$	-59.62181 (0.0)	-59.91077 (0.1)	$-59.96294^{b}(0.1)$	-59.97433 (0.9)	
	${}^{3}A_{1}, (D_{3h})$		-59.87506 (22.5)	-59.92872^{c} (21.5)	-59.93878 (23.2)	
CLi ₃	${}^{2}A_{2}^{"}(D_{3h})$	-59.73198	-60.02089^{d}	-60.07233 ^c	-60.09668	

^a Energies in hartrees; relative energies (in parentheses) in kcal/mol. ^b 4-31G geometries; values using 3-21G geometries are 0.00005 ± 0.00002 hartrees higher. c^{2} 4-31G geometries. d^{4} A lower energy is obtained when the wave function has $C_{2\nu}$ symmetry, but this appears to be an artifact; see text. e^{2} The MP2/6-31G*//MP2/6-31G* energies of CH₃ and CH₃⁺, -39.66875 and -39.32514, respectively, give IP(CH₃) = 9.34 eV; a similar value (9.33 eV) is obtained at MP3 with the same basis set.

Figure 1. Structure-determining molecular orbitals of the singlet $({}^{1}A_{1})$ and triplet $({}^{3}A_{2} \text{ and } {}^{3}B_{1})$ methyl cations. Such orbitals are also involved in the lithiated methyl cations and radicals.

basis sets. The cation calculations were carried out to second (MP2), third (MP3), and partial fourth (limited to single, double, and quadrupole substitutions, MP4SDQ) orders (Table III).

The correlation calculations for the radicals were limited to MP2 using the 4-31G (Table I) and the 6-31G** (Table III) basis sets. The wave functions and energies of the radicals, CLi₃, CHLi₂, and CH₂Li, were calculated using the UHF conserved-state technique13 in conjunction with a second-order variation procedure.¹⁴ This procedure assures that the converged Hartree-Fock energy represents a minimum with respect to small changes of the wave functions and is particularly important in cases where classical SCF methods fail to converge. Such failure may indicate that several Hartree-Fock states have similar energies. The conservedstate technique allows one particular state to be selected; thus, it is necessary to ensure that this state corresponds to the required energy minimum.

The relative Møller-Plesset energies (given in parentheses in Tables I (MP2/4-31G) and III) only change modestly with increase in size of the basis set or with the MP order. As expected, the electron correlation corrections increase the stability of the singlet relative to the triplet forms by about 10 kcal/mol.

Results and Discussion

Several characteristics of the lithium-substituted carbenium ions are notable. Before considering reasons for the remarkable

Table II. Geometries of CHnLi3-n Ions and Radicals^a

species	state	geometry
CH ₃ ⁺	$^{1}A_{1}'(D_{3h})$	CH = 1.078
	${}^{3}B_{1}(C_{2v})$	$CH_1 = 1.305; {}^bCH_2 = 1.084; H_2CH_2 = 161.5$
	${}^{3}A_{2}(C_{2\nu})$	$CH_1 = 1.074; {}^{b}CH_2 = 1.157; H_2CH_2 = 76.0$
CH_3	$^{2}A_{2}^{2}(D_{3h})$	CH = 1.073
CH ₂ Li ⁺	$^{1}A_{1}(C_{2v})$	CLi = 2.162; CH = 1.085; HCH = 107.6
	${}^{3}B_{1}(C_{2v})$	CLi = 2.357; CH = 1.072; HCH = 136.6
CH ₂ Li	${}^{2}B_{1}(C_{2v})$	CLi = 1.943; CH = 1.091; HCH = 106.8
CHLi ₂ *	${}^{1}A_{1}(C_{2v})$	CLi = 2.097; CH = 1.095; LiCLi = 140.0
	${}^{3}A_{2}(C_{2v})$	CLi = 2.038; CH = 1.088; LiCLi = 111.4
CHLi ₂	${}^{2}B_{1}(C_{2v})$	CLi = 2.062; CH = 1.088; LiCLi = 74.6
CLi ₃ +	$^{1}A_{1}'(D_{3h})$	CLi = 2.032 (2.050)
	${}^{3}B_{1}(C_{2\nu})$	$CLi_1 = 1.934 (1.946);^c CLi_2 = 2.044 (2.059);$
		$Li_2CLi_2 = 142.2 \ (143.2)$
	${}^{3}A_{2}(C_{2}v)$	$CLi_1 = 2.019 (2.045);^c CLi_2 = 2.020 (2.039);$
		$Li_2CLi_2 = 96.0$ (96.6)
	${}^{3}A_{1}'(D_{3h})$	CLi = 1.947
CLi3	$^{2}A_{2}''(D_{3h})$	CLi = 1.988

^a HF/6-31G* geometries in all cases except CLi₃⁺ and CLi₃ where $HF/4-31\overline{G}$ values are given ($HF/3-21\overline{G}$ in parentheses): bond lengths in angstrøms; angles in degrees. ${}^{b}H_{1}$ is the unique hydrogen. c Li₁ is the unique lithium.

stability of these species, it is appropriate to discuss their electronic structures and geometries. The same applies to the related lithiated radicals.

Singlet-Triplet Energy Differences for the Cations. The D_{3h} singlet is clearly the preferred form for the unsubstituted methyl cation.⁵ The two triplet states lie more than 92 kcal/mol (MP4SDQ value; 85 kcal/mol at the UHF level) higher in energy. Of the two Jahn-Teller forms (Figure 1), the ${}^{3}A_{2}$ state is more stable than the alternative ${}^{3}B_{1}$ state (Table III). The energy difference between these two triplets is small and is rather sensitive to the inclusion of polarization functions on hydrogen.

Substitution by a single lithium results in a drastic reduction in the singlet-triplet energy difference. The ${}^{3}B_{1}$ state of CH₂Li⁺, corresponding to a promotion of an electron from the C-Li σ_s bonding MO to the π MO, becomes competetive in energy. At the HF level, this state is slightly more stable than the singlet, but inclusion of electron correlation reverses the order of stability (Tables I and III).

Substitution by a second lithium favors the triplet preferentially. Hartree-Fock as well as all correlated energies of the singlet state of CHLi₂⁺ are significantly higher than those of a ³A₂ triplet state. In this triplet, the $b_2(\sigma_A)$ orbital, predominantly C-Li bonding in character, and the $b_1(\pi)$ orbital are singly occupied.

No additional change in the singlet-triplet energy difference is calculated on going from $CHLi_2^+$ to CLi_3^+ . The two Jahn-Teller distorted triplets of CLi_3^+ , ${}^{3}A_2$ and ${}^{3}B_1$, have practically the same energy and are 24 kcal/mol more stable than the singlet

⁽¹²⁾ Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. Binkley, J. S.; Pople, J. A. Int. J. Quantum. Chem. Symp. 1975, 9, 229. Pople, J. A.; Binkley, J. S.; Seeger, R. Ibid. 1976, 10, 1. Krishnan, R.; Pople, J. A. Int. J. Quantum Chem. 1978, 14, 91.
 (13) Seeger, R.; Pople, J. A. J. Chem. Phys. 1976, 65, 265.
 (14) Seeger, R.; Pople, J. A. J. Chem. Phys. 1977, 66, 3045.

		HF	MP2	MP3	MP4SDQ	
CH,	¹ A ₁	-38.87630 (30.9)	-38.98705 (20.2)	-39.00609 (17.7)	-39.01004 (16.7)	
-	³ B ₁	-38.92548 (0.0)	-39.01928 (0.0)	- 39.03422 (0.0)	-39.03659 (0.0)	
CH_3^+	¹ A, '	-39.23629 (0.0)	- 39.34653 (0.0)	-39.36450 (0.0)	-39.36737 (0.0)	
	$^{3}A_{2}$	-39.10138 (84.7)	-39.20107 (84.7)	-39.21741 (92.3)	-39.22009 (92.4)	
	³ B,	-39.09848 (86.5)	-39.19447 (95.4)	-39.21049 (96.6)	-39.21348 (96.6)	
CH,Li ⁺	¹ A,	-46.17917 (1.7)	-46.29036 (0.0)	-46.30844 (0.0)	-46.31170 (0.0)	
-	³ B,	-46.18195 (0.0)	-46.27823 (7.6)	-46.29342 (9.4)	-46.29580 (10.0)	
CH ₂ Li	² B ₁	-46.39842	-46.52968			
CHLi,*	¹ A,	-53.06419 (23.7)	-53.17731 (14.9)	-53.19437 (13.5)	-53.19761 (12.9)	
-	$^{3}A_{2}$	-53.10202 (0.0)	-53.20107 (0.0)	-53.21581 (0.0)	-53.21813 (0.0)	
CLi ₃ ⁺	¹ A ₁ ,	-59.92552 (23.6)	-60.04671 (14.1)	-60.06168 (12.9)	-60.06490 (12.3)	
•	$^{3}A_{2}$	-59.96306 (0.0)	-60.06779 (0.8)	-60.08105 (0.7)	-60.08359 (0.6)	
	³ B ₁	-59.96287 (0.1)	-60.06910 (0.0)	-60.08223 (0.0)	-60.08448 (0.0)	
CLi ₃	² A ₂ "	-60.07218	-60.19011			

^a HF/6-31G* geometries, except CLi₃⁺ (HF/3-21G) and CLi₃ (HF/4-31G). Energies in hartrees; relative energies (in parentheses) in kcal/ mol.

at the HF level. The energy difference is reduced to 12 kcal/mol, still in favor of the triplets, at the MP4SDQ level.

Which of the lithomethyl cations are likely to be ground-state triplets? The problems associated with reliable theoretical prediction of singlet-triplet energy separations are well known.¹⁵ In the present case, the best corrected estimates can be obtained by comparing the results with those for singlet vs. triplet methylene (Table III). The energies for eq 1 (in kcal/mol) at $CH_nLi_{3-n}^+$ (triplet) + CH_2 (singlet) \rightarrow

 $CH_nLi_{3-n}^+$ (singlet) + CH_2 (triplet) (1)

MP4SDQ/6-31G** are: CH₃⁺, -109.1; CH₂Li⁺, -26.6; CHLi₂⁺, -3.8.

If we assume a value of 11 kcal/mol¹⁶ for the singlet-triplet difference of CH₂ (instead of the MP4SDQ value of 16.7 kcal/mol in Table III), addition gives the following corrected energies, $E(\text{singlet}) - E(\text{triplet}): CH_3^+, -98; CH_2Li^+, -16; CHLi_2^+, +7$ kcal/mol. Using the same procedure, the triplet forms of CLi₃⁺ are estimated to be 6 to 7 kcal/mol more stable than the singlet (the use of only the HF/3-21G geometries in this case is not likely to introduce large errors). We conclude that CH_3^+ (obviously!)⁵ and CH₂Li⁺ have singlet ground states, while CHLi₂⁺ and CLi₃⁺ probably are triplets in their ground states.

Cation Geometries. In the singlet state of CH₃⁺, there is optimum C-H σ bonding. The C-H distance of 1.078 Å is typical for an sp² hybridized carbon; a similar value (1.073 Å) is found for CH₃ (Table II). In the ${}^{3}B_{1}$ state of CH₃⁺ the σ_{S} (a₁) orbital is only singly occupied. As a result, one C-H bond elongates to 1.305 Å. The other hydrogens move apart to increase the overlap in the doubly occupied $\sigma_A(b_2)$ orbital. The resulting unique HCH angle is very large, 161.5 Å. The angular distortion in the ${}^{3}A_{2}$ state is just the opposite. Two hydrogens bend toward one another so as to increase the overlap in the doubly occupied $\sigma_{\rm S}$ (a₁) orbital. The unique HCH angle is now only 76°. Owing to the single occupancy of the σ_A (b₂) orbital, two of the C-H bonds lengthen to 1.157 Å. The single electron in the $b_1(\pi)$ orbital of the planar triplets has no first-order geometrical consequence as the orbital is purely nonbonding. Figure 1 illustrates these Jahn-Teller distortions.

The geometries of singlet and triplet CH₂Li⁺ are also easy to understand. Since in the ${}^{3}B_{1}$ state a bonding σ electron has been removed essentially from the $\sigma_s(a_1)$ C-Li bonding orbital, the C-Li distance (2.357 Å) increases from 2.162 Å in the singlet. The HCH angle widening from 107.6° $({}^{1}A_{1})$ to 136.3° $({}^{3}B_{1})$ is also similar to that found in the ${}^{1}A_{1}$, and ${}^{3}B_{1}$ methyl cations.⁵ The $^{1}A_{1}$ and $^{3}B_{1}$ CH₂Li⁺ ions can be considered to be complexes between Li⁺ and singlet and triplet CH₂, respectively. The CH bond lengths and HCH angles in corresponding cations and carbenes are similar, showing only a weak geometrical alteration due to Li⁺ complexation. The corrected singlet-triplet energy

differences for CH_2 (-11 kcal/mol)¹⁶ and for CH_2Li^+ (-16 kcal/mol) suggest that the Li⁺ lithiation energy of singlet CH₂ is 27 kcal/mol greater than that of triplet CH₂. The protonation energy difference is much larger, 103 kcal/mol, also favoring singlet CH₂.

The geometry of triplet $({}^{3}A_{2})$ CHLi₂⁺ shows an unusual feature. As expected, the LiCLi angle decreases from 140.0 to 111.4° on going from the singlet to the ${}^{3}A_{2}$ state. However, the C-Li bond lengths decrease from 2.097 Å in the singlet to 2.038 Å in the triplet. This is rather surprising, since an electron has been removed from the C-Li σ_A bonding MO and this should weaken both C-Li bonds. A simple explanation invokes the effect of the singly occupied π orbital.¹⁷ While this MO is nonbonding in CH₃⁺, appreciable bonding interaction develops after lithium substitution. Thus, the considerable three-center π bonding in triplet CHLi2⁺ more than compensates for the weakness of the C-Li σ bond. The shorter C-Li bond length results. In triplet CH₂Li⁺, this π C-Li bonding is insufficient to overcome the larger weakening of the σ C-Li bond.

Similar geometrical changes are also calculated for CLi₃⁺. The unique LiCLi angle is smaller (96.0°) in the ${}^{3}A_{2}$ state, and is larger (142.2°) in the ³B₁ state. As in the case of CHLi₂⁺, both types of C-Li bonds are shorter in the ³A₂ state relative to the C-Li length in the singlet. In the ${}^{3}B_{1}$ state, the unique C-Li bond is shortened (1.934 vs. 2.032 Å in the singlet) even though the corresponding σ MO is singly occupied. C-Li π bonding accounts for the observed bond-length changes.

We also considered the possibility of π^2 states. Thus, the D_{3h} triplet CLi₃⁺ cation (³A₁') has a doubly occupied π (a₂") orbital and two singly occupied σ_A and σ_S degenerate (e') orbitals. At the MP2/4-31G//HF/4-31G level (Table I) this state is about 23 kcal/mol less stable than the ${}^{3}A_{2}$ and ${}^{3}B_{1}$ forms and 13 kcal/mol less stable than the ${}^{1}A_{1}'$ state. The transfer of two σ electrons to the π orbital results in a pronounced shortening of the CLi bond in CLi₃⁺, from 2.032 Å $({}^{1}A_{1}')$ to 1.947 Å $({}^{3}A_{1}')$. Doubly occupied π states in CHLi₂⁺ and CH₂Li⁺ were much less competitive in energy.

Lithiomethyl Radicals. In the unsubstituted methyl radical, the singly occupied MO $(a_2^{\prime\prime})$ is essentially nonbonding. However, in the lithiomethyl radicals, the π acceptor ability of lithium makes this orbital bonding. This is reflected in the calculated geometries of these species. Thus, the lithiated radicals are all planar and

⁽¹⁵⁾ Harrison, J. F. Acc. Chem. Res. 1974, 7, 378.
(16) Saxe, P.; Schaefer, H. F.; III; Handy, N. C. J. Phys. Chem. 1981, 85, 745, and references cited therein.

⁽¹⁷⁾ While some authors (Streitwieser, A., Jr.; Williams, J. E.; Alexan-(17) while some authors (Stretwiesel, A., Jr., whilams, J. E., Alexan-dratos, S.; McKelvey, J. M. J. Am. Chem. Soc. **1976**, 98, 4778. Collins, J. B.; Streitwieser, A., Jr. J. Comput. Chem. **1980**, 1, 81) claim that "lithium $p-\pi$ orbitals play essentially no role", other interpretations stress the impor-tance of lithium π bonding. See, e.g., ref 3 and Hinde, A. L.; Pross, A.; Radom, L. J. Comput. Chem. **1980**, 1, 118. Pross, A.; Radom, L.; Taft, R. W. J. Org. Chem. 1980, 45, 818.

⁽¹⁸⁾ Rosenstock, H. M.; Draxl, K.; Steiner, B. W.; Heron, J. T. J. Phys.

⁽¹⁹⁾ Roomata 1977, 6, suppl. 1. (19) (a) Kollman, P.; McKelvey, J.; Gund, P. J. Am. Chem. Soc. 1975, (19) (a) Kollman, P.; McKelvey, J.; Gund, P. J. Am. Chem. Soc. 1976, (a) 97, 1640. (b) Sapse, A. M.; Massa, L. J. J. Org. Chem., 1980, 45, 719. (c) Dietrich, R. F.; Kenyon, G. L.; Douglas, J. E.; Kollman, P. A. J. Chem. Soc., Perkin Trans. 2 1980, 1592.

Table IV. Experimental Ionization Potentials (eV)

radical	ionization potential	ref
methyl	9.8	a
ethyl	8.5	а
2-propy1	7.7	а
tert-butyl	6.9	а
ally1	8.1	b
benzy1	7.4	Ь
diphenylmethyl	7.3	С
tropy1	6.2	18
CH,OH	7.6	20
CH, NH,	6.2	20
CH, NMe,	5.7	20
Li	5.4	18
Na	5.1	18
K	4.3	18
Rb	4.2	18
Cs	3.9	18
CLi ₃	4.6	1

^a Houle, F. A.; Beauchamp, J. L. J. Am. Chem. Soc. 1979, 101, 4067. ^b Houle, F. A.; Beauchamp, J. L. Ibid. 1978, 100, 3290. ^c Harrison, A. G.; Lossing, F. P. Ibid. 1960, 82, 1052.

the C-Li bond lengths are shorter than in the corresponding singlet cations (without occupied π -type orbitals): 1.943 (CH₂Li) vs. 2.162 Å (CH₂Li⁺), 2.062 (CHLi₂) vs. 2.097 Å (CHLi₂⁺), and 1.988 (CLi₃) vs. 2.032 Å (CLi₃⁺) (Table II). The bond angles preferred by the radicals and by the corresponding singlet cations also reveal significant differences. While the HCH angle of 106.8° found for CH₂Li deviates only slightly from the angle of 107.6° found for CH₂Li⁺, the LiCLi angles adopted by CHLi₂ and CHLi₂⁺ are 74.6 and 140.0°, respectively. This small angle in CHLi₂ has a more complex origin. A three-center, one-electron π bond is present; the corresponding MO is unoccupied in singlet CHLi₂⁺. In addition, the ground state of CHLi₂ does not have the expected σ occupancy. The 2b₂ orbital is occupied in α but not in β spinspace. In β spinspace, a higher (5a₁) orbital (not shown in Figure 1) is occupied instead, and a smaller LiCLi angle results.

In the case of the CLi₃ radical we approach the limits of single determinant theory. The wave function obtained for the D_{3h} structure indicates, by means of our second-order energy variation procedure, that lowering of the symmetry to C_{2v} would lead to lower energy. Consequently, we reoptimized the geometry and obtained two different C_{2v} structures with lower energy. Inclusion of electron correlation at the MP2 level, however, results in the convergence of the energies of these C_{2v} structures; thus, further geometry optimization using more sophisticated CI methods are likely to yield a unique doublet wave function with D_{3h} symmetry. We believe this should be preferred for CLi₃. Further work on CLi₃ and CHLi₂ is planned.

As in the case of the lithiomethyl cations, we also considered the possibility of doubly π -occupied states of the CLi₃ and CHLi₂ radicals. For CLi₃ the occupation of a π -type orbital in both α and β spinspaces leads to broken symmetry for the two configurations of lowest energy. In the lower energy 2π CHLi₂ state, the 2b₂ orbital is singly occupied. While this enhances the populations of the CLi bonds, the energy is unfavorable. In fact, all doubly π occupied states we considered are higher in energy than the singly π occupied ground states.

The ionization potentials (in eV) for the radicals calculated at the MP2/6-31G** level are: 6.5 (CH₂Li) and 3.3 (CLi₃). Similar IP's are obtained at MP2/4-31G (Table I): 6.4 (CH₂Li), 4.1 (CHLi₂), and 3.3 (CLi₃). The higher theoretical level underestimates the experimental IP of CH₃ (9.84)² by 0.5 eV. If the calculated IP for CLi₃ is corrected by this amount, the experimental value, 4.6 \pm 0.3 eV,¹ is still somewhat larger.

Thermodynamic Stability of Lithiomethyl Radicals and Cations. In addition to their unusual electronic structure, the lithiomethyl radicals and cations are remarkable in another respect: they are indicated to possess exceptional thermodynamic stability. The stability can be assessed in a variety of ways. A comparison with selected experimental ionization potentials (Table IV) provides an indication. Although the stability of the radicals is also in-

Table V. Methyl Stabilization Energies, Equations 2 and 3 (in kcal/mol)

	4-31G	6-31G*	expt ^a
CH ₂ Li ⁺	-77.6	-78.1	
CHL̃i₂ ⁺	-124.0^{b}	-123.7 ^b	
CLi ₃ ⁺	-145.3^{b}		
CH ₂ CH ₃ ⁺	-29.6	-29.5	-40
$CH(CH_3)_2^+$	-50.0	-51.2	-64
$C(CH_3)_3^+$	-67.8		-81
CH ₂ NH ₂ ⁺	$-89,^{c}-93.3^{d}$	-86.5	-98
$CH(NH_2)_2^+$	-128^{c}		
$C(NH_2)_3^+$	-147^{c}		
CH₂Li	-8.6	-9.6	
CHLi ₂	-33.9	-36.5	
CLi ₃	-29.5		
CH ₂ CH ₃	-2.9^{e}	-2.97	-6.0
$CH(CH_3)_2$	-5.8 ^e		-9.5
$C(CH_3)_3$	-8.9^{e}		-12.9
CH_2NH_2	-10.2^{g}		-10^{n}

^a Calculated from data in ref 18. For more recent literature and cation results calculated at higher levels, see ref 5. ^b Singlet cation data employed. The triplet cation value should be slightly lower (see text). ^c Reference 19a. ^d Reference 3e. ^e For data, see Yoshime, M.; Pacansky, J. J. Chem. Phys., in press, and references cited therein. Values in Leroy, G.; Peeters, D.; Wilante, C.; Khaki, M. Nouv. J. Chim. 1980, 4, 403, are not fully optimized. ^f "Carnegie-Mellon Quantum Chemistry Archive": Whiteside, R. A.; Frisch, M. J., Binkley, J. S.; Raghauachari, K.; DeFrees, D. J.; Schlegel, H. B., Pople, J. A., 2nd ed., 1981, available from Pople, J. A. ^g Crans, D.; Clark, T.; Schleyer, P. v. R. Tetrahedron Lett. 1980, 21, 3681. ^h Reference 20.

volved, the IP's tend toward lower values as the stability of the cation formed increases. Thus the IP's of the allyl, benzyl, tropyl, and the *tert*-butyl radicals are significantly lower than that of the methyl radical. Recently, Griller and Lossing have reported that Me_2NCH_2 has an IP of only 5.7 eV, "the lowest thus far reported for any organic species".²⁰ However, CLi_3 has an even lower IP, 4.6 eV.¹ On the basis of IP's, CLi_3^+ is the most stable substituted methyl cation known to date.

Quantitative estimates of the stabilization of the lithiomethyl radicals and cations by substituents can be obtained from the energies of the isodesmic reactions:

$$R_n H_{n-3} C \cdot + C H_4 \rightarrow R_n H_{n-3} C H + C H_3 \cdot$$
(2)

$$R_n H_{n-3}C^+ + CH_4 \rightarrow R_n H_{n-3}CH + CH_3^+$$
(3)

Although our computations have been carried out at a higher theoretical level (MP4SDQ/6-31G**//6-31G*), most of the results available for comparison are at the 4-31G//4-31G level. For the sake of consistency, we have computed the energies of reactions 2 and 3 ($R = CH_3$, NH_2 , and Li) at the 4-31G//4-31G level for the lithiomethyl radicals and cations. These results (Table V) again establish the remarkable stability associated with the lithium substitution. Previous comparison of CH_2Li^+ and $CH_2NH_2^+$ indicated lithium to be nearly as effective as an amino group in stabilizing a carbenium ion.^{3e} The present results show that the cumulative effect of double and triple substitution is also similar for the two groups. Similar attenuation or "saturation" is noted both for Li and NH_2 ; the extra stabilization due to the second substituent is less than the first, and the third is less than the second.

The calculated stabilization energy of singlet CLi_3^+ (145 kcal/mol) is practically the same as that for $\text{C}(\text{NH}_2)_3^+$ (147 kcal/mol). The stabilization energy for triplet CLi_3^+ is even larger. In comparison to Li, the methyl group is only half as effective. Thus the stabilization energy of CH_2Li^+ is about as large as that of the *tert*-butyl cation. It should thus be possible to observe lithiated carbocations in condensed phases, provided media can be found to prevent side reactions.

Lithium is also quite effective in stabilizing free radicals. Reference data for methyl and amino substituents, provided in

⁽²⁰⁾ Griller, D.; Lossing, F. P. J. Am. Chem. Soc. 1981, 103, 1586.

Table V, reveal just how well lithium functions in this respect. Since both the CLi₃ radical and the CLi₃⁺ cation are highly stabilized, the remarkably low experimental ionization potential of the former, $4.6 \pm 0.3 \text{ eV}$, is not a full measure of the carbenium ion stability. Were not the CLi₃ radical so stable, its IP would be even lower.

What is the origin of the remarkable stability of these lithiated species? A carbenium ion is stabilized by a group which increases the electron density at the central carbon atom. Conventionally, only π donors have been considered to be stabilizing because of the formally vacant carbenium ion p orbital. However, σ donors can be just as effective. Increasing the electron density at the charged atom through donation is an efficient mode of stabilization. Interestingly, several α -metallocarbenium ions have been implicated as intermediates in catalytic isomerization reactions.²¹ The unusual structures reported for carbenoids have also be rationalized on the basis of ion pairs involving metallocarbenium ions.²² The stabilization of a radical by lithium can be attributed both to its π acceptor and σ donor abilities.

Our results refer only to the thermodynamic stability of the various species. A discussion of kinetic stability is beyond the scope of the present work. We emphasize that solvation and association are important for these and other lithium compounds. However, the experimental observation in the gas phase of monomeric CLi3. as well as the cations, CH₂Li⁺, and CLi₃⁺,¹ is a stimulus for further experimental and theoretical study of organolithium compounds.²³

Conclusions

The principal conclusions to be drawn from this study are the following:

1. Substitution of hydrogen by lithium in the methyl cation lowers the energy of triplet states more than singlets. CH₂Li⁺ is still a ground-state singlet, but with a much reduced singlettriplet separation compared with CH₃⁺. CHLi₂⁺ and CLi₃⁺ are predicted to have triplet ground states.

2. The ionization potential of CLi_3 is predicted to be 6 eV less than that of CH_3 , in reasonable agreement with experiment.

3. Lithium is a strong stabilizing substituent for carbenium ions, comparable to π donors such as NH₂. CLi₃⁺ is one of the most stable carbenium ions known.

Note Added in Proof. After writing this paper, additional work has revealed the triplet methyl cation (but not its lithiated counterparts) to be nonplanar. This will be discussed in a future publication.

Acknowledgment. We thank Dr. C. H. Wu for his interest, Dr. E. D. Jemmis for early contributions to this work, and Professor R. J. Lagow for information prior to publication. Support was provided by the National Science Foundation (Grant CHE-79-01061-01), a NATO Grant, the Fonds der Chemischen Industrie, and Professor Dr. W. Meyer.

Registry No. CH₃⁺, 14531-53-4; CH₃, 2229-07-4; CH₂Li⁺, 62581-43-5; CH2Li+, 81506-43-6; CHLi2+, 81506-44-7; CHLi2+, 81506-45-8; CLi₃⁺, 81506-46-9; CH₂CH₃⁺, 14936-94-8; CH(CH₃)₂⁺, 19252-53-0; C(CH₃)₃⁺, 14804-25-2; CH₂NH₂⁺, 54088-53-8; CH(NH₂)₂⁺, 50676-76-1; C(NH₂)₃+, 43531-41-5; CH₂+, 2465-56-7; CH₂OH+, 2597-43-5; CH₂NH₂, 10507-29-6; CH₂NMe₂, 30208-47-0; Li, 7439-93-2; Na, 7440-23-5; Rb, 7440-17-7; Cs, 7440-46-2; CLi3, 81506-48-1; ethyl, 2025-56-1; 2-propyl, 2025-55-0; tert-butyl, 1605-73-8; allyl, 1981-80-2; benzyl, 2154-56-5; diphenylmethyl, 4471-17-4; tropyl, 3551-27-7.

Heats of Formation of Some Simple Alkyl Radicals¹

A. L. Castelhano and D. Griller*

Contribution from the Division of Chemistry, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6. Received October 14, 1981

Abstract: Equilibrium constants, K, for the system Me + RI \Rightarrow MeI + R. were measured in solution by using electron paramagnetic resonance spectroscopy. Given the entropies of the components of the equilibrium and the heats of formation of the iodides, the relative heats of formation of the alkyl radicals were obtained. With $\Delta H_{f,300}(\text{Me}) = 34.4 \text{ kcal mol}^{-1}$ chosen as a standard, the following heats of formation for other alkyl radicals were obtained: Et., 28.0; n-Pr., 22.8; i-Pr., 19.2; s-Bu., 13.9; c- C_5H_9 , 25.1; t-Bu, 9.4 kcal mol⁻¹. These data lead to the following C-H bond dissociation energies for simple alkanes: primary C-H, ~ 100 ; secondary C-H, ~ 96 ; tertiary C-H, ~ 94 kcal mol⁻¹.

The C-H bond dissociation energies, BDE, in simple alkanes form a vital part of our understanding of the influence of thermodynamic properties on chemical reactivity. Differences in these energies, while small in percentage terms, obviously have a profound influence on the pathways of chemical reactions. They are, nevertheless, notoriously difficult to quantify, as are the related heats of formation of alkyl radicals, $\Delta H_{f}(\mathbf{R} \cdot)$, eq 1. For example,

$$BDE(R-H) = \Delta H_f(R) + \Delta H_f(H) - \Delta H_f(R-H)$$
(1)

estimates of the bond dissociation energy for the simplest tertiary C-H bond, i.e., that in isobutane,²⁻⁸ cover the range 91.2-97.4 kcal mol⁻¹. The spread in these values is due entirely to discrepancies in the measured values of $\Delta H_{\rm f}(t-{\rm Bu}\cdot).^{2-7}$

In a preliminary report of this work,⁹ we demonstrated that a "radical buffer"¹⁰ system could be used to measure the *relative*

⁽²¹⁾ For a review see: Bishop, K. C., III Chem. Rev. 1976, 76, 461. Chisholm, M. H. Platinum Met. Rev. 1975, 19, 100.

⁽²²⁾ Clark, T.; Schleyer, P. v. R. J. Chem. Soc., Chem. Commun. 1979, 883

⁽²³⁾ Lithiated carbonium ions, e.g., CLi₅⁺, are also indicated to be highly stable. Jemmis, E. D.; Chandrasekhar, J.; Würthwein, E.-U.; Schleyer, P. v. R.; Chinn, J. W., Jr.; Landro, F. J.; Lagow, R. J.; Luke, B.; Pople, J. A. J. Am. Chem. Soc., in press.

⁽¹⁾ Issued as NRCC publication No. 20286.

⁽²⁾ Teranishi, H.; Benson, S. W. J. Am. Chem. Soc. 1963, 85, 2887–2890.
(3) Griller, D.; Ingold, K. U. Int. J. Chem. Kinet. 1974, 6, 453–456.
(4) Choo, K. Y.; Beadle, P. C.; Piskiewicz, L. W.; Golden, D. M. Int. J. Chem. Kinet. 1979, 11, 969-976.

^{(5) (}a) Marshall, R. M.; Purnell, J. H.; Storey, P. D. J. Chem. Soc., Faraday Trans. l 1976, 72, 85–92. Tsang, W. Int. J. Chem. Kinet. 1978, 10, 821–837. Walker, J. A.; Tsang, W. Ibid. 1979, 11, 867–882. (b) See also: Taylor, J. E.; Milazzo, T. S. Ibid. 1978, 10, 1245–1257. Davis, H. Ibid. 1979, 11, 1245–1257. Davis, H. Ibid. 1979, 10, 1245–1257. Davis, H. Ibid. 1979, 11, 1131-1132. Taylor, J. E. Ibid. 1979, 11, 1133.

⁽⁶⁾ Parks, D. A.; Quinn, C. P. J. Chem. Soc., Faraday Trans. 1 1976, 1952-1971.

⁽⁷⁾ Atri, G. M.; Baldwin, R. R.; Evans, G. A.; Walker, R. W. J. Chem. Soc., Faraday Trans. 1 1978, 74, 366-379.

⁽⁸⁾ The thermochemical data used to calculate BDE were taken from Cox and Pilcher (Cox, J. D.; Pilcher, G. "Thermochemistry of Organic and Or-ganometallic Compounds", Academic Press: New York, 1970).

⁽⁹⁾ Castelhano, A. L.; Marriott, P. R.; Griller, D. J. Am. Chem. Soc. 1981, 103, 4262-4263.