Remarkable Stabilities, Geometries, and Electronic States of Lithium-Substituted Carbenium Ions, $\mathrm{CLi}_{3-n} \mathrm{H}_{n}{ }^{+}(n=0-3)$, and the Corresponding Radicals

Jayaraman Chandrasekhar, ${ }^{\ddagger}$ John A. Pople, ${ }^{\dagger}$ Rolf Seeger, ${ }^{\boldsymbol{8}}$ Ute Seeger, ${ }^{\S}$ and Paul von Ragué Schleyer**
Contribution from the Institut für Organische Chemie der Friedrich-Alexander-Universität Erlangen-Nürnberg, D-8520 Erlangen, Federal Republic of Germany, Fachbereich Chemie der Universität, D-6750 Kaiserslautern, Federal Republic of Germany, and Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213. Received June 12, 1981

Abstract

The thermodynamic stability of the $\mathrm{CLi}_{3}{ }^{+}$cation is extraordinary. The low experimental gas-phase ionization potential (IP) of $\mathrm{CLi}_{3}(4.6 \pm 0.3 \mathrm{eV})$ can be compared with the IP's of $\mathrm{Li}(5.3), \mathrm{Na}(5.1), \mathrm{K}(4.3)$, and $\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}(5.7 \mathrm{eV})$. Furthermore, the geometry and electronic structure of $\mathrm{CLi}_{3}{ }^{+}$also are unusual: molecular orbital theory including electron correlation predicts $\mathrm{CLi}_{3}{ }^{+}$to prefer a $C_{2 v}$ Jahn-Teller distorted geometry and a triplet ground state. This triplet preference is attributed to multicenter delocalization of the π electron; $\mathrm{CHLi}_{2}{ }^{+}$is similar, but $\mathrm{CH}_{2} \mathrm{Li}^{+}$and $\mathrm{CH}_{3}{ }^{+}$are indicated to have singlet ground states. Parallel studies on the neutral $\mathrm{CLi}_{n} \mathrm{H}_{3-n}$ species lead to a satisfactory reproduction of the experimentally observed lowering of the radical IP's (from 9.8 eV for CH_{3} to 4.6 eV for CLi_{3}). Lithium is a remarkably effective stabilizing substituent for carbenium ions, comparable to NH_{2} in this respect. Thus, the stabilization energies (relative to $\mathrm{CH}_{3}{ }^{+}$) of $\mathrm{CLi}_{3}{ }^{+}$and the guanidinium ion, $\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}{ }^{+}$, are comparable. The corresponding radicals are also stabilized by lithium substitution.

Introduction

When lithium vapor above 970 K is allowed to permeate through a graphite membrane, CLi_{3} is produced. ${ }^{1}$ Its ionization potential to give $\mathrm{CLi}_{3}{ }^{+}$was determined to be remarkably low, 4.6 $\pm 0.3 \mathrm{eV} .{ }^{2}$ As part of a continuing research program on the nature of compounds of carbon and lithium, ${ }^{3}$ we have now investigated by means of theoretical calculations the nature of CLi_{3}, $\mathrm{CLi}_{3}{ }^{+}$, and their lower homologues where one or more lithium atoms have been replaced by hydrogens. Only a few of these species have been examined previously. ${ }^{3 d, e, j}$

The electronic structures of the lithiated carbocations pose alternatives not normally considered. Take $\mathrm{CH}_{3}{ }^{+}$as a model. The familiar molecular orbitals utilized are shown in Figure 1. ${ }^{4}$ The HOMO is a doubly degenerate set of σ bonding MOs and the LUMO is a nonbonding π orbital concentrated on the central atom. Therefore, $\mathrm{CH}_{3}{ }^{+}$prefers to be a ground state $D_{3 h}$ singlet. But what about $\mathrm{CH}_{3}{ }^{+}$triplet excited states? ${ }^{5}$ Jahn-Teller distortion away from $D_{3 h}$ symmetry is expected. Two $C_{2 v}$ forms are possible. In both, the π orbital is singly occupied, but the other singly occupied orbital is either $\sigma_{\mathrm{S}}\left(\mathrm{a}_{1}\right)$ or $\sigma_{\mathrm{A}}\left(\mathrm{b}_{2}\right)$. These ${ }^{3} \mathrm{~B}_{1}$ and ${ }^{3} \mathrm{~A}_{2}$ triplet methyl cations are not competitive with the singlet in energy. ${ }^{5}$ However, the situation can be quite different when the hydrogens in $\mathrm{CH}_{3}{ }^{+}$are replaced by lithium. Since the $\mathrm{C}-\mathrm{Li} \sigma$ bond is relatively weak, the σ_{S} and σ_{A} orbitals of singlet $\mathrm{CLi}_{3}{ }^{+}$ lie high in energy. The π orbital, on the other hand, is stabilized through $p \pi-p \pi$ interaction between carbon and lithium. ${ }^{3}$ Both these effects might lead to a π occupancy and a preferential stabilization of the triplet form. Lithiomethyl cations could thus be prototypes of carbenium ions with triplet ground states. There are precedents for such unusual electronic structures; triplet forms of $\mathrm{CH}_{2} \mathrm{Li}_{2},{ }^{3 \mathrm{a}, 6} \mathrm{H}_{2} \mathrm{C}=\mathrm{CLi}_{2},{ }^{3 \mathrm{~m}, 7}$ etc., are found calculationally to be the ground states of these species.

Computational Details

Ab initio calculations were carried out on the cation series, $\mathrm{CH}_{3}{ }^{+}$, $\mathrm{CH}_{2} \mathrm{Li}^{+}, \mathrm{CHLi}_{2}{ }^{+}$, and $\mathrm{CLi}_{3}{ }^{+}$, and on the corresponding radicals. Geometries were optimized at the restricted Hartree-Fock (RHF) level for singlet states and the unrestricted Hartree-Fock (UHF) level ${ }^{8}$ for doublets and triplets. The highest level basis set used was $6-31 \mathrm{G}^{* 9}$ (split-valence including d functions on first-row atoms). ${ }^{9}$ The larger systems, $\mathrm{CLi}_{3}{ }^{+}$and CLi_{3}, were optimized only at the split-valence levels, $3-2 I G^{10}$ or 4-31G (5-2IG for lithium is implied). ${ }^{11}$ Nonplanar structures

[^0]were examined, but none were found to be local minima. (However, see Note Added in Proof.)

Table I lists the energies and Table II the geometries of the optimized structures. These geometries were used in subsequent single-point calculations with the $6-31 \mathrm{G}^{* *}$ basis set (which includes p functions on hydrogen). ${ }^{9}$ The resulting energies are designated " HF " in Table III. Corrections for electron correlation were evaluated using Moller-Plesset perturbation theory ${ }^{12}$ with the $4-31 \mathrm{G}$ (Table I) and $6-31 \mathrm{G}^{* *}$ (Table III)
(1) Wu, C. H.; Ihle, H. R. Chem. Phys. Lett. 1979, 61, 54. Also, $\mathrm{CLi}_{3}{ }^{+}$ and $\mathrm{CHLi}_{2}{ }^{+}$have been detected mass spectroscopically via the flash vaporization of polylithium compounds (Gurak, J. A.; Chinn, J. W., Jr.; Lagow, R. J. J. Am. Chem. Soc., submitted for publication; Lagow, R. J., private communication).
(2) See Table IV and discussion below.
(3) (a) Apeloig, Y.; Schleyer, P. v. R.; Binkley, J. S.; Pople, J. A. J. Am. Chem. Soc. 1976, 98, 4332. (b) Apeloig, Y.; Schleyer, P. v. R.; Binkley, J. S.; Pople, J. A.; Jorgensen, W. L. Tetrahedron Lett. 1976, 3923. (c) Collins, J. B.; Dill, J. D.; Jemmis, E. D.; Apeloig, Y.; Schleyer, P. v. R.; Pople, J. A.; Seeger, R. J. Am. Chem. Soc. 1976, 98, 5419 . (d) Apeloig, Y.; Schleyer, P. v. R. Tetrahedron Lett. 1977, 4647. (e) Apeloig, Y.; Schleyer, P. v. R.; Pople, J. A. J. Am. Chem. Soc. 1977, 99, 1291. (f) Jemmis, E. D.; Poppinger, D.; Schleyer, P. v. R.; Pople, J. A. Ibid. 1977, 99, 5796. (g) Rauscher, G.; Clark, T.; Poppinger, D.; Schleyer, P. v. R.; Angew. Chem. 1978, 90, 306 . (h) Jemmis, E. D.; Schleyer, P. v. R.; Pople, J. A. J. Organomet. Chem. 1978, 154, 327. (i) Clark, T.; Schleyer, P. v. R.; Pople, J. A. J. Chem. Soc., Chem. Commun. 1978, 137. (j) Jemmis, E. D.; Chandrasekhar, J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1979, 101, 527. (k) Jemmis, E. D.; Chandrasekhar, J.; Schleyer, P. v. R. Ibid. 1979, 101, 2848. (1) Kos, A.; Poppinger, D.; Schleyer, P. v. R.; Thiel, W. Tetrahedron Lett. 1980, 21, 2151. (m) Apeloig, Y.; Clark, T.; Kos, A.; Jemmis, E. D.; Schleyer, P. v. R. Isr. J. Chem. 1980, 20, 43. (n) Kos, A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1980, 102, 7928. (o) Kos, A.; Jemmis, E. D.; Schleyer, P. v. R.; Gleiter, R.; Fischbach, U.; Pople, J. A. Ibid. 1981, 103, 4996 . (p) Schleyer, P. v. R.; Kos, A. J. J. Chem. Soc., Chem. Commun. 1982, 448.
(4) Jorgensen, W. L.; Salem, L. "The Organic Chemists Book of Orbitals"; Academic Press: New York, 1973. Gimarc, B. M. Acc. Chem. Res. 1974, 7, 384. Gimarc, B. M. "Molecular Structure and Bonding. The Qualitative Molecular Orbital Approach"; Academic Press: New York, 1979.
(5) Krishnan, R.; Whiteside, R. A.; Pople, J. A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1981, 103, 5649. Triplet $\mathrm{CH}_{3}{ }^{+}$has been inferred in the gas phase (Schwarz, H., private communication)
(6) Laidig, W. D.; Schaefer, H. F., III J. Am. Chem. Soc. 1978, $100,5872$.
(7) Laidig, W. D.; Schaefer, H. F., III J. Am. Chem. Soc. 1979, 101, 7184.
(8) Pople, J. A.; Nesbet, R. K. J. Chem. Phys. 1954, 22, 571
(9) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
(10) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939 .
(11) The Gaussian 76 program with the standard basis sets was used: Binkley, J. S.; Whiteside, R. A.; Hariharan, P.; Seeger, R.; Pople, J. A.; Hehre, W. J.; Newton, M. D. QCPE 1979, 11, 368. Higher level calculations employed the Gaussian 80 CMU program; Binkley, J. S.; Whiteside, R.; Krishnan, R.; Seeger, R.; Schlegel, H. B.; DeFrees, D. J.; Topiol, S.; Kahn, L. R.; Pople, J. A. Ibid. 1981, 11, 406. The computations at Kaiserslautern were carried out with a Perkin-Elmer $8 / 32$ applying parallel processing techniques (see Seeger, R. J. Comput. Chem. 1981, 2, 168).

Table I. Hartree-Fock and MP2/4-31G Energies of Optimized $\mathrm{CH}_{n} \mathrm{Li}_{3-n}$ Ions and Radicals ${ }^{a}$

species	state	3-21G//3-21G	4-31G//4-31G	6-31G*//6-31G*	MP2/4-31G/HF/4-31G
$\mathrm{CH}_{3}{ }^{+}$	${ }^{1} \mathrm{~A}_{1}{ }^{\prime}\left(D_{3 h}\right)$	$-39.00913(0.0)$	$-39.17512(0.0)$		
	${ }^{3} \mathrm{~B}_{1}\left(C_{2 v}\right)$	$-38.87299(85.4)$	$-39.03684(86.8)$	$-39.09016(88.2)$	$-39.09237 \text { (93.9) }$
	${ }^{3} \mathrm{~A}_{2}\left(C_{2 v}\right)$	-38.86934 (87.7)	--39.03474 (88.1)	-39.09095 (87.8)	-39.09304 (93.5)
$\begin{aligned} & \mathrm{CH}_{3} \\ & \mathrm{CH}_{2} \mathrm{Li}^{+} \end{aligned}$	${ }^{2} \mathrm{~A}_{2}\left(D_{3 h}\right)$	-39.34261	-39.50497	- 39.55899	e
	${ }^{1} \mathrm{~A}_{1}\left(C_{2 V}\right)$	-45.91361 (2.9)	-46.11907 (3.1)	$-46.17551(1.7)$	$-46.18643(0.0)$
	${ }^{3} \mathrm{~B}_{1}\left(C_{2 v}\right)$	-45.91830 (0.0)	-46.12401 (0.0)	-46.17782 (0.0)	-46.17971 (4.2)
$\begin{aligned} & \mathrm{CH}_{2} \mathrm{Li} \\ & \mathrm{CHLi}_{2}+ \end{aligned}$	${ }^{2} \mathrm{~B}_{1}\left(C_{2 v}\right)$	-46.13337	-46.33894	-46.39468	-46.42029
	${ }^{1} \mathrm{~A}_{1}\left(C_{2 v}\right)$	-52.76156 (23.6)	-53.00844 (23.6)	$-53.06196(24.1)$	$-53.07837(15.8)$
	${ }^{3} \mathrm{~A}_{2}\left(C_{2 v}\right)$	-52.79923 (0.0)	-53.04610 (0.0)	-53.10019 (0.0)	$-53.10358(0.0)$
$\begin{aligned} & \mathrm{CHLi}_{2} \\ & \mathrm{CLi}_{3}{ }^{+} \end{aligned}$	${ }^{2} \mathrm{~B}_{1}\left(C_{2 V}\right)$		-53.19459	-53.25101	-53.25323
	${ }^{1} \mathrm{~A}_{1}{ }^{\prime}\left(D_{3 h}\right)$	$-59.58603(22.5)$	-59.87562 (22.2)	$-59.92557^{b}(23.5)$	$-59.95459(13.3)$
	${ }^{3} \mathrm{~B}_{1}\left(C_{2 v}\right)$	$-59.62178(0.0)$	-59.91093 (0.0)	$-59.96309^{b}(0.0)$	$-59.97571(0.0)$
	${ }^{3} \mathrm{~A}_{2},\left(C_{2 v}\right)$	-59.62181 (0.0)	-59.91077 (0.1)	$-59.96294^{b}(0.1)$	-59.97433 (0.9)
	${ }^{3} \mathrm{~A}_{1},\left(D_{3 h}\right)$		-59.87506 -60.02089^{d}	$-59.92872^{c}(21.5)$ -60.07233^{c}	$-59.93878(23.2)$
CLi_{3}	${ }^{2} \mathrm{~A}_{2}{ }^{\prime \prime}\left(D_{3 h}\right)$	-59.73198	$-60.02089^{\text {d }}$	$-60.07233^{\text {c }}$	-60.09668

${ }^{a}$ Energies in hartrees; relative energies (in parentheses) in kcal/mol. b $4-31 \mathrm{G}$ geometries; values using 3-2 1 G geometries are $0.00005 \pm$ 0.00002 hartrees higher. ${ }^{c} 4-31 \mathrm{G}$ geometries. ${ }^{d}$ A lower energy is obtained when the wave function has $C_{2 v}$ symmetry, but this appears to be an artifact; see text. ${ }^{e}$ The MP2/6-31G*//MP2/6-31G* energies of CH_{3} and $\mathrm{CH}_{3}{ }^{+},-39.66875$ and -39.32514 , respectively, give $\mathrm{IP}\left(\mathrm{CH}_{3}\right)=$ 9.34 eV ; a similar value (9.33 eV) is obtained at MP3 with the same basis set.
\uparrow

$\sigma_{s}\left(e^{\prime}\right)$

$\sigma_{s}\left(a_{1}\right)$

Figure 1. Structure-determining molecular orbitals of the singlet $\left({ }^{1} \mathrm{~A}_{1}\right)$ and triplet (${ }^{3} \mathrm{~A}_{2}$ and ${ }^{3} \mathrm{~B}_{1}$) methyl cations. Such orbitals are also involved in the lithiated methyl cations and radicals.
basis sets. The cation calculations were carried out to second (MP2), third (MP3), and partial fourth (limited to single, double, and quadrupole substitutions, MP4SDQ) orders (Table III).

The correlation calculations for the radicals were limited to MP2 using the $4-31 \mathrm{G}$ (Table I) and the $6-31 \mathrm{G}^{* *}$ (Table III) basis sets. The wave functions and energies of the radicals, $\mathrm{CLi}_{3}, \mathrm{CHLi}_{2}$, and $\mathrm{CH}_{2} \mathrm{Li}$, were calculated using the UHF conserved-state technique ${ }^{13}$ in conjunction with a second-order variation procedure. ${ }^{14}$ This procedure assures that the converged Hartree-Fock energy represents a minimum with respect to small changes of the wave functions and is particularly important in cases where classical SCF methods fail to converge. Such failure may indicate that several Hartree-Fock states have similar energies. The conservedstate technique allows one particular state to be selected; thus, it is necessary to ensure that this state corresponds to the required energy minimum.

The relative Moller-Plesset energies (given in parentheses in Tables I (MP2/4-31G) and III) only change modestly with increase in size of the basis set or with the MP order. As expected, the electron correlation corrections increase the stability of the singlet relative to the triplet forms by about $10 \mathrm{kcal} / \mathrm{mol}$.

Results and Discussion

Several characteristics of the lithium-substituted carbenium ions are notable. Before considering reasons for the remarkable

[^1]Table II. Geometries of $\mathrm{CH}_{n} \mathrm{Li}_{3-n}$ Ions and Radicals ${ }^{a}$

species	state	geometry
$\mathrm{CH}_{3}{ }^{+}$	${ }^{1} \mathrm{~A}_{1}{ }^{\prime}\left(D_{3 h}\right)$	$\mathrm{CH}=1.078$
	${ }^{3} \mathrm{~B}_{1}\left(C_{2 v}\right)$	$\mathrm{CH}_{1}=1.305 ; b \mathrm{CH}_{2}=1.084 ; \mathrm{H}_{2} \mathrm{CH}_{2}=161.5$
	${ }^{3} \mathrm{~A}_{2}\left(C_{2 v}\right)$	$\mathrm{CH}_{1}=1.074 ; b \mathrm{CH}_{2}=1.157 ; \mathrm{H}_{2} \mathrm{CH}_{2}=76.0$
$\begin{aligned} & \mathrm{CH}_{3} \\ & \mathrm{CH}_{2} \mathrm{Li}^{+} \end{aligned}$	${ }^{2} \mathrm{~A}_{2}{ }^{\prime}\left(D_{3 h}\right)$	$\mathrm{CH}=1.073$
	${ }^{1} \mathrm{~A}_{1}\left(C_{2 v}\right)$	$\mathrm{CLI}=2.162 ; \mathrm{CH}=1.085 ; \mathrm{HCH}=107.6$
	${ }^{3} \mathrm{~B}_{1}\left(C_{2 v}\right)$	$\mathrm{CLi}=2.357 ; \mathrm{CH}=1.072 ; \mathrm{HCH}=136.6$
$\begin{gathered} \mathrm{CH}_{2} \mathrm{Li} \\ \mathrm{CHLi}_{2} \end{gathered}$	${ }^{2} \mathrm{~B}_{1}\left(C_{2 v}\right)$	$\mathrm{CLi}=1.943 ; \mathrm{CH}=1.091 ; \mathrm{HCH}=106.8$
	${ }_{3}^{1} \mathrm{~A}_{1}\left(C_{2 v}\right)$	$\mathrm{CLi}=2.097 ; \mathrm{CH}=1.095 ; \mathrm{LiCLi}=140.0$
	${ }^{3} \mathrm{~A}_{2}\left(C_{2 v}\right)$	$\mathrm{CLi}=2.038 ; \mathrm{CH}=1.088 ; \mathrm{LiCLi}=111.4$
$\mathrm{CHLi}_{2} \mathrm{CLi}_{3}{ }^{+}$	${ }^{2} \mathrm{~B}_{1}\left(C_{2 v}\right)$	$\mathrm{CLi}=2.062 ; \mathrm{CH}=1.088 ; \mathrm{LiCLi}=74.6$
	${ }^{1} \mathrm{~A}_{1}{ }^{\prime}\left(D_{3}{ }^{2}\right)$	$\mathrm{CLi}=2.032$ (2.050)
	${ }^{3} \mathrm{~B}_{1}\left(C_{2 v}\right)$	$\begin{gathered} \mathrm{CLi}_{1}=1.934(1.946) ;{ }^{c} \mathrm{CLi}_{2}=2.044(2.059) ; \\ \mathrm{Li}_{2} \mathrm{CLi}_{2}=142.2(143.2) \end{gathered}$
	${ }^{3} \mathrm{~A}_{2}\left(C_{2 v}\right)$	$\begin{aligned} & \mathrm{CLi}_{1}=2.019(2.045) ;{ }^{c} \mathrm{CLi}_{2}=2.020(2.039) ; \\ & \mathrm{Li}_{2} \mathrm{CLi}_{2}=96.0(96.6) \end{aligned}$
	${ }^{3} \mathrm{~A}_{1}{ }^{\prime},\left(D_{3 h}\right)$	$\mathrm{CLi}=1.947$
CLi_{3}	$\left.{ }^{2} \mathrm{~A}_{2}{ }^{\prime \prime}{ }^{(} D_{3 h}\right)$	$\mathrm{CLi}=1.988$

${ }^{a} \mathrm{HF} / 6-31 \mathrm{G}^{*}$ geometries in all cases except $\mathrm{CLi}_{3}{ }^{+}$and CLi_{3} where HF/4-31G values are given ($\mathrm{HF} / 3-21 \mathrm{G}$ in parentheses): bond lengths in angstr $\phi \mathrm{ms}$; angles in degrees. ${ }^{b} \mathrm{H}_{1}$ is the unique hydrogen. ${ }^{c} \mathrm{Li}_{1}$ is the unique lithium.
stability of these species, it is appropriate to discuss their electronic structures and geometries. The same applies to the related lithiated radicals.

Singlet-Triplet Energy Differences for the Cations. The $D_{3 h}$ singlet is clearly the preferred form for the unsubstituted methyl cation. ${ }^{5}$ The two triplet states lie more than $92 \mathrm{kcal} / \mathrm{mol}$ (MP4SDQ value; $85 \mathrm{kcal} / \mathrm{mol}$ at the UHF level) higher in energy. Of the two Jahn-Teller forms (Figure 1), the ${ }^{3} \mathrm{~A}_{2}$ state is more stable than the alternative ${ }^{3} \mathrm{~B}_{1}$ state (Table III). The energy difference between these two triplets is small and is rather sensitive to the inclusion of polarization functions on hydrogen.
Substitution by a single lithium results in a drastic reduction in the singlet-triplet energy difference. The ${ }^{3} \mathrm{~B}_{1}$ state of $\mathrm{CH}_{2} \mathrm{Li}^{+}$, corresponding to a promotion of an electron from the $\mathrm{C}-\mathrm{Li} \sigma_{\mathrm{s}}$ bonding MO to the $\pi \mathrm{MO}$, becomes competetive in energy. At the HF level, this state is slightly more stable than the singlet, but inclusion of electron correlation reverses the order of stability (Tables I and III).
Substitution by a second lithium favors the triplet preferentially. Hartree-Fock as well as all correlated energies of the singlet state of $\mathrm{CHLi}_{2}{ }^{+}$are significantly higher than those of a ${ }^{3} \mathrm{~A}_{2}$ triplet state. In this triplet, the $\mathrm{b}_{2}\left(\sigma_{\mathrm{A}}\right)$ orbital, predominantly $\mathrm{C}-\mathrm{Li}$ bonding in character, and the $b_{1}(\pi)$ orbital are singly occupied.
No additional change in the singlet-triplet energy difference is calculated on going from $\mathrm{CHLi}_{2}{ }^{+}$to $\mathrm{CLi}_{3}{ }^{+}$. The two JahnTeller distorted triplets of $\mathrm{CLi}_{3}{ }^{+},{ }^{3} \mathrm{~A}_{2}$ and ${ }^{3} \mathrm{~B}_{1}$, have practically the same energy and are $24 \mathrm{kcal} / \mathrm{mol}$ more stable than the singlet

Table III. Correlated Energies of $\mathrm{CH}_{n} \mathrm{Li}_{3-n}$ Ions and Radicals (6-31G**)

		HF	MP2	MP3	MP4SDQ
CH_{2}	${ }^{1} \mathrm{~A}_{1}$	-38.87630 (30.9)	-38.98705 (20.2)	-39.00609 (17.7)	-39.01004 (16.7)
	${ }^{3} \mathrm{~B}_{1}$	-38.92548(0.0)	-39.01928 (0.0)	-39.03422 (0.0)	-39.03659 (0.0)
$\mathrm{CH}_{3}{ }^{+}$	${ }^{1} \mathrm{~A}_{1}$,	-39.23629 (0.0)	-39.34653 (0.0)	-39.36450 (0.0)	$-39.36737(0.0)$
	${ }^{3} \mathrm{~A}_{2}$	-39.10138(84.7)	- 39.20107 (84.7)	-39.21741 (92.3)	$-39.22009(92.4)$
	${ }^{3} \mathrm{~B}_{1}$	-39.09848 (86.5)	-39.19447 (95.4)	-39.21049 (96.6)	-39.21348 (96.6)
$\mathrm{CH}_{2} \mathrm{Li}^{+}$	${ }^{1} \mathrm{~A}_{1}$	-46.17917 (1.7)	-46.29036 (0.0)	$-46.30844(0.0)$	$-46.31170(0.0)$
	${ }^{3} \mathrm{~B}_{1}$	-46.18195 (0.0)	-46.27823 (7.6)	-46.29342 (9.4)	-46.29580 (10.0)
	${ }^{2} \mathrm{~B}_{1}$	-46.39842	-46.52968		
$\mathrm{CHLi}_{2}{ }^{+}$	${ }^{1} \mathrm{~A}_{1}$	-53.06419 (23.7)	-53.17731 (14.9)	$-53.19437(13.5)$	$-53.19761(12.9)$
	${ }^{3} \mathrm{~A}_{2}$,	$-53.10202(0.0)$	$-53.20107(0.0)$	$-53.21581(0.0)$	$-53.21813(0.0)$
$\mathrm{CLi}_{3}{ }^{+}$	${ }^{1} \mathrm{~A}_{1}{ }^{\text {a }}$	-59.92552 (23.6)	-60.04671 (14.1)	-60.06168 (12.9)	-60.06490 (12.3)
	${ }^{3} \mathrm{~A}_{2}$	-59.96306 (0.0)	$-60.06779(0.8)$	-60.08105 (0.7)	-60.08359 (0.6)
		$-59.96287(0.1)$	$-60.06910(0.0)$	-60.08223 (0.0)	-60.08448 (0.0)
CLi_{3}	${ }^{2} \mathrm{~A}_{2}{ }^{\prime}$	-60.07218	-60.19011		

${ }^{a} \mathrm{HF} / 6-31 \mathrm{G} *$ geometries, except $\mathrm{CLi}_{3}{ }^{+}(\mathrm{HF} / 3-21 \mathrm{G})$ and CLi_{3} ($\mathrm{HF} / 4-31 \mathrm{G}$). Energies in hartrees; relative energies (in parentheses) in $\mathrm{kcal} /$ mol.
at the HF level. The energy difference is reduced to $12 \mathrm{kcal} / \mathrm{mol}$, still in favor of the triplets, at the MP4SDQ level.
Which of the lithomethyl cations are likely to be ground-state triplets? The problems associated with reliable theoretical prediction of singlet-triplet energy separations are well known. ${ }^{15}$ In the present case, the best corrected estimates can be obtained by comparing the results with those for singlet vs. triplet methylene (Table III). The energies for eq 1 (in $\mathrm{kcal} / \mathrm{mol}$) at $\mathrm{CH}_{n} \mathrm{Li}_{3-n}{ }^{+}$(triplet) $+\mathrm{CH}_{2}$ (singlet) \rightarrow

$$
\mathrm{CH}_{n} \mathrm{Li}_{3-n}+\text { (singlet) }+\mathrm{CH}_{2} \text { (triplet) }(1)
$$

MP4SDQ/6-31G** are: $\mathrm{CH}_{3}{ }^{+},-109.1 ; \mathrm{CH}_{2} \mathrm{Li}^{+},-26.6 ; \mathrm{CHLi}_{2}{ }^{+}$, -3.8 .

If we assume a value of $11 \mathrm{kcal} / \mathrm{mol}^{16}$ for the singlet-triplet difference of CH_{2} (instead of the MP4SDQ value of $16.7 \mathrm{kcal} / \mathrm{mol}$ in Table III), addition gives the following corrected energies, E (singlet) $-E$ (triplet): $\mathrm{CH}_{3}{ }^{+},-98 ; \mathrm{CH}_{2} \mathrm{Li}^{+},-16 ; \mathrm{CHLi}_{2}{ }^{+},+7$ $\mathrm{kcal} / \mathrm{mol}$. Using the same procedure, the triplet forms of $\mathrm{CLi}_{3}{ }^{+}$ are estimated to be 6 to $7 \mathrm{kcal} / \mathrm{mol}$ more stable than the singlet (the use of only the HF/3-21G geometries in this case is not likely to introduce large errors). We conclude that $\mathrm{CH}_{3}{ }^{+}$(obviously!) ${ }^{5}$ and $\mathrm{CH}_{2} \mathrm{Li}^{+}$have singlet ground states, while $\mathrm{CHLi}_{2}{ }^{+}$and $\mathrm{CLi}_{3}{ }^{+}$ probably are triplets in their ground states.

Cation Geometries. In the singlet state of $\mathrm{CH}_{3}{ }^{+}$, there is optimum C-H σ bonding. The $\mathrm{C}-\mathrm{H}$ distance of $1.078 \AA$ is typical for an sp^{2} hybridized carbon; a similar value ($1.073 \AA$) is found for CH_{3} (Table II). In the ${ }^{3} \mathrm{~B}_{1}$ state of $\mathrm{CH}_{3}{ }^{+}$the $\sigma_{\mathrm{S}}\left(\mathrm{a}_{1}\right)$ orbital is only singly occupied. As a result, one $\mathrm{C}-\mathrm{H}$ bond elongates to $1.305 \AA$. The other hydrogens move apart to increase the overlap in the doubly occupied $\sigma_{\mathrm{A}}\left(\mathrm{b}_{2}\right)$ orbital. The resulting unique HCH angle is very large, $161.5 \AA$. The angular distortion in the ${ }^{3} \mathrm{~A}_{2}$ state is just the opposite. Two hydrogens bend toward one another so as to increase the overlap in the doubly occupied $\sigma_{\mathrm{S}}\left(\mathrm{a}_{1}\right)$ orbital. The unique HCH angle is now only 76°. Owing to the single occupancy of the $\sigma_{\mathrm{A}}\left(\mathrm{b}_{2}\right)$ orbital, two of the $\mathrm{C}-\mathrm{H}$ bonds lengthen to $1.157 \AA$. The single electron in the $b_{1}(\pi)$ orbital of the planar triplets has no first-order geometrical consequence as the orbital is purely nonbonding. Figure 1 illustrates these Jahn-Teller distortions.

The geometries of singlet and triplet $\mathrm{CH}_{2} \mathrm{Li}^{+}$are also easy to understand. Since in the ${ }^{3} \mathrm{~B}_{1}$ state a bonding σ electron has been removed essentially from the $\sigma_{\mathrm{S}}\left(\mathrm{a}_{1}\right) \mathrm{C}$-Li bonding orbital, the C-Li distance $(2.357 \AA$) increases from $2.162 \AA$ in the singlet. The HCH angle widening from $107.6^{\circ}\left({ }^{1} \mathrm{~A}_{1}\right)$ to $136.3^{\circ}\left({ }^{3} \mathrm{~B}_{1}\right)$ is also similar to that found in the ${ }^{1} \mathrm{~A}_{1}$, and ${ }^{3} \mathrm{~B}_{1}$ methyl cations. ${ }^{5}$ The ${ }^{1} \mathrm{~A}_{1}$ and ${ }^{3} \mathrm{~B}_{1} \mathrm{CH}_{2} \mathrm{Li}^{+}$ions can be considered to be complexes between Li^{+}and singlet and triplet CH_{2}, respectively. The CH bond lengths and HCH angles in corresponding cations and carbenes are similar, showing only a weak geometrical alteration due to Li^{+}complexation. The corrected singlet-triplet energy

[^2]differences for $\mathrm{CH}_{2}(-11 \mathrm{kcal} / \mathrm{mol})^{16}$ and for $\mathrm{CH}_{2} \mathrm{Li}^{+}(-16$ $\mathrm{kcal} / \mathrm{mol}$) suggest that the Li^{+}lithiation energy of singlet CH_{2} is $27 \mathrm{kcal} / \mathrm{mol}$ greater than that of triplet CH_{2}. The protonation energy difference is much larger, $103 \mathrm{kcal} / \mathrm{mol}$, also favoring singlet CH_{2}.
The geometry of triplet $\left({ }^{3} \mathrm{~A}_{2}\right) \mathrm{CHLi}_{2}{ }^{+}$shows an unusual feature. As expected, the LiCLi angle decreases from 140.0 to 111.4° on going from the singlet to the ${ }^{3} \mathrm{~A}_{2}$ state. However, the $\mathrm{C}-\mathrm{Li}$ bond lengths decrease from $2.097 \AA$ in the singlet to $2.038 \AA$ in the triplet. This is rather surprising, since an electron has been removed from the $\mathrm{C}-\mathrm{Li} \sigma_{\mathrm{A}}$ bonding MO and this should weaken both C-Li bonds. A simple explanation invokes the effect of the singly occupied π orbital. ${ }^{17}$ While this MO is nonbonding in $\mathrm{CH}_{3}{ }^{+}$, appreciable bonding interaction develops after lithium substitution. Thus, the considerable three-center π bonding in triplet $\mathrm{CHLi}_{2}{ }^{+}$more than compensates for the weakness of the $\mathrm{C}-\mathrm{Li} \sigma$ bond. The shorter $\mathrm{C}-\mathrm{Li}$ bond length results. In triplet $\mathrm{CH}_{2} \mathrm{Li}^{+}$, this $\pi \mathrm{C}-\mathrm{Li}$ bonding is insufficient to overcome the larger weakening of the $\sigma \mathrm{C}-\mathrm{Li}$ bond.

Similar geometrical changes are also calculated for $\mathrm{CLi}_{3}{ }_{3}$. The unique LiCLi angle is smaller $\left(96.0^{\circ}\right)$ in the ${ }^{3} \mathrm{~A}_{2}$ state, and is larger (142.2°) in the ${ }^{3} \mathrm{~B}_{1}$ state. As in the case of $\mathrm{CHLi}_{2}{ }^{+}$, both types of $\mathrm{C}-\mathrm{Li}$ bonds are shorter in the ${ }^{3} \mathrm{~A}_{2}$ state relative to the $\mathrm{C}-\mathrm{Li}$ length in the singlet. In the ${ }^{3} \mathrm{~B}_{1}$ state, the unique C - Li bond is shortened (1.934 vs. $2.032 \AA$ in the singlet) even though the corresponding σ MO is singly occupied. $\mathrm{C}-\mathrm{Li} \pi$ bonding accounts for the observed bond-length changes.

We also considered the possibility of π^{2} states. Thus, the $D_{3 h}$ triplet $\mathrm{CLi}_{3}{ }^{+}$cation $\left({ }^{3} \mathrm{~A}_{1}{ }^{\prime}\right)$ has a doubly occupied π ($\mathrm{a}_{2}{ }^{\prime \prime}$) orbital and two singly occupied σ_{A} and σ_{S} degenerate (e') orbitals. At the MP2/4-31G//HF/4-31G level (Table I) this state is about $23 \mathrm{kcal} / \mathrm{mol}$ less stable than the ${ }^{3} \mathrm{~A}_{2}$ and ${ }^{3} \mathrm{~B}_{1}$ forms and 13 $\mathrm{kcal} / \mathrm{mol}$ less stable than the ${ }^{1} \mathrm{~A}_{1}{ }^{\prime}$ state. The transfer of two σ electrons to the π orbital results in a pronounced shortening of the CLi bond in $\mathrm{CLi}_{3}{ }^{+}$, from $2.032 \AA\left({ }^{1} \mathrm{~A}_{1}{ }^{\prime}\right)$ to $1.947 \AA\left({ }^{3} \mathrm{~A}_{1}{ }^{\prime}\right)$. Doubly occupied π states in $\mathrm{CHLi}_{2}{ }^{+}$and $\mathrm{CH}_{2} \mathrm{Li}^{+}$were much less competitive in energy.

Lithiomethyl Radicals. In the unsubstituted methyl radical, the singly occupied MO ($\mathrm{a}_{2}{ }^{\prime \prime}$) is essentially nonbonding. However, in the lithiomethyl radicals, the π acceptor ability of lithium makes this orbital bonding. This is reflected in the calculated geometries of these species. Thus, the lithiated radicals are all planar and

[^3]Table IV. Experimental Ionization Potentials (eV)

radical	ionization potential	ref
methyl	9.8	a
ethyl	8.5	a
2-propyl	7.7	a
tert-buty1	6.9	a
ally1	8.1	b
benzyl	7.4	b
diphenylmethyl	7.3	c
tropyl	6.2	18
$\mathrm{CH}_{2} \mathrm{OH}$	7.6	20
$\mathrm{CH}_{2} \mathrm{NH}_{2}$	6.2	20
$\mathrm{CH}_{2} \mathrm{NMe}_{2}$	5.7	20
Li	5.4	18
Na	5.1	18
K	4.3	18
Rb	4.2	18
Cs	3.9	18
CLi	4.6	1

${ }^{a}$ Houle, F. A.; Beauchamp, J. L. J. Am. Chem. Soc. 1979, 101, 4067. ${ }^{b}$ Houle, F. A.; Beauchamp, J. L. Ibid. 1978, $100,3290$.
${ }^{c}$ Harrison, A. G.; Lossing, F. P. Ibid. 1960, 82, 1052.
the $\mathrm{C}-\mathrm{Li}$ bond lengths are shorter than in the corresponding singlet cations (without occupied π-type orbitals): $1.943\left(\mathrm{CH}_{2} \mathrm{Li}\right)$ vs. $2.162 \AA\left(\mathrm{CH}_{2} \mathrm{Li}^{+}\right), 2.062\left(\mathrm{CHLi}_{2}\right)$ vs. $2.097 \AA\left(\mathrm{CHLi}_{2}{ }^{+}\right)$, and $1.988\left(\mathrm{CLi}_{3}\right)$ vs. $2.032 \AA\left(\mathrm{CLi}_{3}{ }^{+}\right)$(Table II). The bond angles preferred by the radicals and by the corresponding singlet cations also reveal significant differences. While the HCH angle of 106.8° found for $\mathrm{CH}_{2} \mathrm{Li}$ deviates only slightly from the angle of 107.6° found for $\mathrm{CH}_{2} \mathrm{Li}^{+}$, the LiCLi angles adopted by CHLi_{2} and $\mathrm{CHLi}_{2}{ }^{+}$are 74.6 and 140.0°, respectively. This small angle in CHLi_{2} has a more complex origin. A three-center, one-electron π bond is present; the corresponding MO is unoccupied in singlet $\mathrm{CHLi}_{2}{ }^{+}$. In addition, the ground state of CHLi_{2} does not have the expected σ occupancy. The $2 b_{2}$ orbital is occupied in α but not in β spinspace. In β spinspace, a higher ($5 \mathrm{a}_{1}$) orbital (not shown in Figure 1) is occupied instead, and a smaller LiCLi angle results.

In the case of the CLi_{3} radical we approach the limits of single determinant theory. The wave function obtained for the $D_{3 h}$ structure indicates, by means of our second-order energy variation procedure, that lowering of the symmetry to $C_{2 v}$ would lead to lower energy. Consequently, we reoptimized the geometry and obtained two different $C_{2 v}$ structures with lower energy. Inclusion of electron correlation at the MP2 level, however, results in the convergence of the energies of these $C_{2 v}$ structures; thus, further geometry optimization using more sophisticated CI methods are likely to yield a unique doublet wave function with $D_{3 h}$ symmetry. We believe this should be preferred for CLi_{3}. Further work on CLi_{3} and CHLi_{2} is planned.

As in the case of the lithiomethyl cations, we also considered the possibility of doubly π-occupied states of the CLi_{3} and CHLi_{2} radicals. For CLi_{3} the occupation of a π-type orbital in both α and β spinspaces leads to broken symmetry for the two configurations of lowest energy. In the lower energy $2 \pi \mathrm{CHLi}_{2}$ state, the $2 b_{2}$ orbital is singly occupied. While this enhances the populations of the CLi bonds, the energy is unfavorable. In fact, all doubly π occupied states we considered are higher in energy than the singly π occupied ground states.

The ionization potentials (in eV) for the radicals calculated at the MP2/6-31G** level are: $6.5\left(\mathrm{CH}_{2} \mathrm{Li}\right)$ and $3.3\left(\mathrm{CLi}_{3}\right)$. Similar IP's are obtained at MP2/4-31G (Table I): $6.4\left(\mathrm{CH}_{2} \mathrm{Li}\right), 4.1$ $\left(\mathrm{CHLi}_{2}\right)$, and $3.3\left(\mathrm{CLi}_{3}\right)$. The higher theoretical level underestimates the experimental IP of $\mathrm{CH}_{3}(9.84)^{2}$ by 0.5 eV . If the calculated IP for CLi_{3} is corrected by this amount, the experimental value, $4.6 \pm 0.3 \mathrm{eV},{ }^{1}$ is still somewhat larger.

Thermodynamic Stability of Lithiomethyl Radicals and Cations. In addition to their unusual electronic structure, the lithiomethyl radicals and cations are remarkable in another respect: they are indicated to possess exceptional thermodynamic stability. The stability can be assessed in a variety of ways. A comparison with selected experimental ionization potentials (Table IV) provides an indication. Although the stability of the radicals is also in-

Table V. Methyl Stabilization Energies, Equations 2
and 3 (in kcal/mol)

	4-31G	6-31G*	$\operatorname{expt}^{\text {a }}$
$\mathrm{CH}_{2} \mathrm{Li}^{+}$	-77.6	-78.1	
$\mathrm{CHLi}_{2}{ }^{+}$	$-124.0^{\text {b }}$	$-123.7^{\text {b }}$	
$\mathrm{CLi}_{3}{ }^{+}$	$-145.3{ }^{\text {b }}$		
$\mathrm{CH}_{2} \mathrm{CH}_{3}{ }^{+}$	-29.6	-29.5	-40
$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}{ }^{+}$	-50.0	-51.2	-64
$\mathrm{C}_{\left(\mathrm{CH}_{3}\right)_{3}{ }^{+}}$	-67.8 c ${ }^{\text {c }}$ d		-81
$\mathrm{CH}_{2} \mathrm{NH}_{2}^{+}{ }^{+}$	-89 ${ }^{\text {c }}$ c ${ }^{\text {c }}$ - $-93.3^{\text {d }}$	-86.5	--98
${\mathrm{CH}\left(\mathrm{NH}_{2}\right)_{2}{ }^{+}}^{+}$	-128^{c}		
$\mathrm{C}_{\left(\mathrm{NH}_{2}\right)_{3}{ }^{+}}$	$-147^{\text {c }}$		
$\mathrm{CH}_{2} \mathrm{Li}$	-8.6	-9.6	
CHLi_{2}	-33.9	-36.5	
CLi_{3}	-29.5		
$\mathrm{CH}_{2} \mathrm{CH}_{3}$	$-2.9{ }^{e}$	$-2.9{ }^{f}$	-6.0
$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	$-5.8{ }^{e}$		-9.5
$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	-8.9^{e}		-12.9
$\mathrm{CH}_{2} \mathrm{NH}_{2}$	-10.2^{g}		-10^{h}

${ }^{a}$ Calculated from data in ref 18 . For more recent literature and cation results calculated at higher levels, see ref 5. b Singlet cation data employed. The triplet cation value should be slightly lower (see text). ${ }^{c}$ Reference $19 \mathrm{a} .{ }^{d}$ Reference 3 e . ${ }^{e}$ For data, see Yoshime, M.; Pacansky, J. J. Chem. Phys., in press, and references cited therein. Values in Leroy, G.; Peeters, D.; Wilante, C.; Khaki, M. Nouv. J. Chim. 1980, 4, 403, are not fully optimized.
f "Carnegie-Mellon Quantum Chemistry Archive": Whiteside, R. A.; Frisch, M. J., Binkley, J. S.; Raghauachari, K.; DeFrees, D. J.; Schlegel, H. B., Pople, J. A., 2nd ed., 1981, available from Pople, J. A. ${ }^{g}$ Crans, D.; Clark, T.; Schleyer, P.v. R. Tetrahedron Lett. 1980, 21, $3681 .^{h}$ Reference 20.
volved, the IP's tend toward lower values as the stability of the cation formed increases. Thus the IP's of the allyl, benzyl, tropyl, and the tert-butyl radicals are significantly lower than that of the methyl radical. Recently, Griller and Lossing have reported that $\mathrm{Me}_{2} \mathrm{NCH}_{2} \cdot$ has an IP of only 5.7 eV , "the lowest thus far reported for any organic species". ${ }^{20}$ However, CLi_{3}. has an even lower IP, $4.6 \mathrm{eV} .{ }^{1}$ On the basis of IP's, $\mathrm{CLi}_{3}{ }^{+}$is the most stable substituted methyl cation known to date.

Quantitative estimates of the stabilization of the lithiomethyl radicals and cations by substituents can be obtained from the energies of the isodesmic reactions:

$$
\begin{align*}
\mathrm{R}_{n} \mathrm{H}_{n-3} \mathrm{C} \cdot & +\mathrm{CH}_{4} \tag{2}\\
\mathrm{R}_{n} \mathrm{H}_{n-3} \mathrm{C}^{+}+\mathrm{R}_{n} \mathrm{H}_{n-3} \mathrm{CH}+\mathrm{CH}_{4} & \rightarrow \mathrm{R}_{n} \mathrm{H}_{n-3} \mathrm{CH}+\mathrm{CH}_{3}^{+} \tag{3}
\end{align*}
$$

Although our computations have been carried out at a higher theoretical level (MP4SDQ/6-31G**//6-31G*), most of the results available for comparison are at the 4-31G//4-31G level. For the sake of consistency, we have computed the energies of reactions 2 and $3\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{NH}_{2}\right.$, and Li$)$ at the 4-31G//4-31G level for the lithiomethyl radicals and cations. These results (Table V) again establish the remarkable stability associated with the lithium substitution. Previous comparison of $\mathrm{CH}_{2} \mathrm{Li}^{+}$and $\mathrm{CH}_{2} \mathrm{NH}_{2}{ }^{+}$indicated lithium to be nearly as effective as an amino group in stabilizing a carbenium ion. ${ }^{3 \mathrm{e}}$ The present results show that the cumulative effect of double and triple substitution is also similar for the two groups. Similar attenuation or "saturation" is noted both for Li and NH_{2}; the extra stabilization due to the second substituent is less than the first, and the third is less than the second.

The calculated stabilization energy of singlet $\mathrm{CLi}_{3}{ }^{+}$(145 $\mathrm{kcal} / \mathrm{mol})$ is practically the same as that for $\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}{ }^{+}(147$ $\mathrm{kcal} / \mathrm{mol}$). The stabilization energy for triplet $\mathrm{CLi}_{3}{ }^{+}$is even larger. In comparison to Li , the methyl group is only half as effective. Thus the stabilization energy of $\mathrm{CH}_{2} \mathrm{Li}^{+}$is about as large as that of the tert-butyl cation. It should thus be possible to observe lithiated carbocations in condensed phases, provided media can be found to prevent side reactions.

Lithium is also quite effective in stabilizing free radicals. Reference data for methyl and amino substituents, provided in

[^4]Table V, reveal just how well lithium functions in this respect. Since both the CLi_{3} radical and the $\mathrm{CLi}_{3}{ }^{+}$cation are highly stabilized, the remarkably low experimental ionization potential of the former, $4.6 \pm 0.3 \mathrm{eV}$, is not a full measure of the carbenium ion stability. Were not the CLi_{3} radical so stable, its IP would be even lower.

What is the origin of the remarkable stability of these lithiated species? A carbenium ion is stabilized by a group which increases the electron density at the central carbon atom. Conventionally, only π donors have been considered to be stabilizing because of the formally vacant carbenium ion p orbital. However, σ donors can be just as effective. Increasing the electron density at the charged atom through donation is an efficient mode of stabilization. Interestingly, several α-metallocarbenium ions have been implicated as intermediates in catalytic isomerization reactions. ${ }^{21}$ The unusual structures reported for carbenoids have also be rationalized on the basis of ion pairs involving metallocarbenium ions. ${ }^{22}$ The stabilization of a radical by lithium can be attributed both to its π acceptor and σ donor abilities.

Our results refer only to the thermodynamic stability of the various species. A discussion of kinetic stability is beyond the scope of the present work. We emphasize that solvation and association are important for these and other lithium compounds. However, the experimental observation in the gas phase of monomeric CLi_{3}. as well as the cations, $\mathrm{CH}_{2} \mathrm{Li}^{+}$, and $\mathrm{CLi}_{3}{ }^{+},{ }^{1}$ is a stimulus for further experimental and theoretical study of organolithium compounds. ${ }^{23}$

[^5]
Conclusions

The principal conclusions to be drawn from this study are the following:

1. Substitution of hydrogen by lithium in the methyl cation lowers the energy of triplet states more than singlets. $\mathrm{CH}_{2} \mathrm{Li}^{+}$ is still a ground-state singlet, but with a much reduced singlettriplet separation compared with $\mathrm{CH}_{3}{ }^{+} . \mathrm{CHLi}_{2}{ }^{+}$and $\mathrm{CLi}_{3}{ }^{+}$are predicted to have triplet ground states.
2. The ionization potential of CLi_{3} is predicted to be 6 eV less than that of CH_{3}, in reasonable agreement with experiment.
3. Lithium is a strong stabilizing substituent for carbenium ions, comparable to π donors such as $\mathrm{NH}_{2} . \mathrm{CLi}_{3}{ }^{+}$is one of the most stable carbenium ions known.

Note Added in Proof. After writing this paper, additional work has revealed the triplet methyl cation (but not its lithiated counterparts) to be nonplanar. This will be discussed in a future publication.

Acknowledgment. We thank Dr. C. H. Wu for his interest, Dr. E. D. Jemmis for early contributions to this work, and Professor R. J. Lagow for information prior to publication. Support was provided by the National Science Foundation (Grant CHE-79-01061-01), a NATO Grant, the Fonds der Chemischen Industrie, and Professor Dr. W. Meyer.

Registry No. $\mathrm{CH}_{3}{ }^{+}$, 14531-53-4; $\mathrm{CH}_{3}{ }^{+}, 2229-07-4 ; \mathrm{CH}_{2} \mathrm{Li}^{+}, 62581-$ 43-5; $\mathrm{CH}_{2} \mathrm{Li},, 81506-43-6 ; \mathrm{CHLi}_{2}{ }^{+}, 81506-44-7 ; \mathrm{CHLi}_{2}$, , $81506-45-8$; $\mathrm{CLi}_{3}{ }^{+}, 81506-46-9 ; \mathrm{CH}_{2} \mathrm{CH}_{3}{ }^{+}, 14936-94-8 ; \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}{ }^{+}, 19252-53-0$; $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}{ }^{+}, 14804-25-2 ; \mathrm{CH}_{2} \mathrm{NH}_{2}{ }^{+}, 54088-53-8 ; \mathrm{CH}\left(\mathrm{NH}_{2}\right)_{2}{ }^{+}, 50676-$ 76-1; $\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}{ }^{+}, 43531-41-5 ; \mathrm{CH}_{2}$, , 2465-56-7; $\mathrm{CH}_{2} \mathrm{OH} \cdot$, 2597-43-5; $\mathrm{CH}_{2} \mathrm{NH}_{2}, 10507-29-6 ; \mathrm{CH}_{2} \mathrm{NMe}_{2}{ }^{+}, 30208-47-0 ; \mathrm{Li}, 7439-93-2 ; \mathrm{Na}$, $7440-23-5 ; \mathrm{Rb}, 7440-17-7$; Cs, $7440-46-2$; $\mathrm{CLi}_{3}, 81506-48-1$; ethyl, 2025-56-1; 2-propyl, 2025-55-0; tert-butyl, 1605-73-8; allyl, 1981-80-2; benzyl, 2154-56-5; diphenylmethyl, 4471-17-4; tropyl, 3551-27-7.

Heats of Formation of Some Simple Alkyl Radicals ${ }^{1}$

A. L. Castelhano and D. Griller*
Contribution from the Division of Chemistry, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6. Received October 14, 1981

Abstract

Equilibrium constants, K, for the system Me• $+\mathrm{RI} \rightleftharpoons \mathrm{MeI}+\mathrm{R} \cdot$ were measured in solution by using electron paramagnetic resonance spectroscopy. Given the entropies of the components of the equilibrium and the heats of formation of the iodides, the relative heats of formation of the alkyl radicals were obtained. With $\Delta H_{f, 300}(\mathrm{Me} \cdot)=34.4 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ chosen as a standard, the following heats of formation for other alkyl radicals were obtained: Etr, 28.0; $n-\mathrm{Pr} \cdot, 22.8 ; i-\mathrm{Pr} \cdot, 19.2 ; s-\mathrm{Bu} \cdot$, $13.9 ; \mathrm{c}^{-} \mathrm{C}_{5} \mathrm{H}_{9^{*}}, 25.1 ; t$ - Bu$\cdot, 9.4 \mathrm{kcal} \mathrm{mol}^{-1}$. These data lead to the following $\mathrm{C}-\mathrm{H}$ bond dissociation energies for simple alkanes: primary C-H, ~ 100; secondary C-H, ~ 96; tertiary C-H, $\sim 94 \mathrm{kcal} \mathrm{mol}^{-1}$.

The $\mathrm{C}-\mathrm{H}$ bond dissociation energies, BDE , in simple alkanes form a vital part of our understanding of the influence of thermodynamic properties on chemical reactivity. Differences in these energies, while small in percentage terms, obviously have a profound influence on the pathways of chemical reactions. They are, nevertheless, notoriously difficult to quantify, as are the related heats of formation of alkyl radicals, $\Delta H_{\mathrm{f}}(\mathrm{R} \cdot)$, eq 1. For example,

$$
\begin{equation*}
\mathrm{BDE}(\mathrm{R}-\mathrm{H})=\Delta H_{\mathrm{f}}(\mathrm{R} \cdot)+\Delta H_{\mathrm{f}}(\mathrm{H} \cdot)-\Delta H_{\mathrm{f}}(\mathrm{R}-\mathrm{H}) \tag{1}
\end{equation*}
$$

estimates of the bond dissociation energy for the simplest tertiary $\mathrm{C}-\mathrm{H}$ bond, i.e., that in isobutane, ${ }^{2-8}$ cover the range $91.2-97.4$

[^6]$\mathrm{kcal} \mathrm{mol}{ }^{-1}$. The spread in these values is due entirely to discrepancies in the measured values of $\Delta H_{f}(t-\mathrm{Bu} \cdot)^{2-7}$

In a preliminary report of this work, ${ }^{9}$ we demonstrated that a "radical buffer" ${ }^{10}$ system could be used to measure the relative
(5) (a) Marshall, R. M.; Purnell, J. H.; Storey, P. D. J. Chem. Soc., Faraday Trans. l 1976, 72, 85-92. Tsang, W. Int. J. Chem. Kinet. 1978, l0, 821-837. Walker, J. A.; Tsang, W. Ibid. 1979, 11, 867-882. (b) See also: Taylor, J. E.; Milazzo, T. S. Ibid. 1978, 10, 1245-1257. Davis, H. Ibid. 1979, 11, 1131-1132. Taylor, J. E. Ibid. 1979, 11, 1133.
(6) Parks, D. A.; Quinn, C. P. J. Chem. Soc., Faraday Trans. 1 1976, 1952-1971.
(7) Atri, G. M.; Baldwin, R. R.; Evans, G. A.; Walker, R. W. J. Chem. Soc., Faraday Trans. 1 1978, 74, 366-379.
(8) The thermochemical data used to calculate BDE were taken from Cox and Pilcher (Cox, J. D.; Pilcher, G. "Thermochemistry of Organic and Organometallic Compounds"; Academic Press: New York, 1970).
(9) Castelhano, A. L.; Marriott, P. R.; Griller, D. J. Am. Chem. Soc. 1981, 103, 4262-4263.

[^0]: Universităt Erlangen-Nürnberg.
 ${ }^{\dagger}$ Carnegie-Mellon University.
 ${ }^{5}$ Universität Kaiserslautern.

[^1]: (12) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. Binkley, J. S.; Pople, J. A. Int. J. Quantum. Chem. Symp. 1975, 9, 229. Pople, J. A.; Binkley, J. S.; Seeger, R. Ibid. 1976, 10, 1. Krishnan, R.; Pople, J. A. Int. J. Quantum Chem. 1978, 14, 91.
 (13) Seeger, R.; Pople, J. A. J. Chem. Phys. 1976, 65, 265.
 (14) Seeger, R.; Pople, J. A. J. Chem. Phys. 1977, 66, 3045.

[^2]: (15) Harrison, J. F. Acc. Chem. Res. 1974, 7, 378.
 (16) Saxe, P.; Schaefer, H. F.; III; Handy, N. C. J. Phys. Chem. 1981, 85,745, and references cited therein.

[^3]: (17) While some authors (Streitwieser, A., Jr.; Williams, J. E.; Alexandratos, S.; McKelvey, J. M. J. Am. Chem. Soc. 1976, 98, 4778. Collins, J. B.; Streitwieser, A., Jr. J. Comput. Chem. 1980, 1, 81) claim that "lithium $\mathrm{p}-\pi$ orbitals play essentially no role", other interpretations stress the importance of lithium π bonding. See, e.g., ref 3 and Hinde, A. L.; Pross, A.; Radom, L. J. Comput. Chem. 1980, I, 118. Pross, A.; Radom, L.; Taft, R. W. J. Org. Chem. 1980, 45, 818.
 (18) Rosenstock, H. M.; Draxl, K.; Steiner, B. W.; Heron, J. T. J. Phys. Chem. Ref. Data 1977, 6, suppl. 1.
 (19) (a) Kollman, P.; McKelvey, J.; Gund, P. J. Am. Chem. Soc. 1975, 97, 1640. (b) Sapse, A. M.; Massa, L. J. J. Org. Chem., 1980, 45, 719. (c) Dietrich, R. F.; Kenyon, G. L.; Douglas, J. E.; Kollman, P. A. J. Chem. Soc., Perkin Trans. 2 1980, 1592.

[^4]: (20) Griller, D.; Lossing, F. P. J. Am. Chem. Soc. 1981, 103, 1586.

[^5]: (21) For a review see: Bishop, K. C., III Chem. Rev. 1976, 76, 461. Chisholm, M. H. Platinum Met. Rev. 1975, 19, 100.
 (22) Clark, T.; Schleyer, P. v. R. J. Chem. Soc., Chem. Commun. 1979, 883.
 (23) Lithiated carbonium ions, e.g., $\mathrm{CLis}_{5}{ }^{+}$, are also indicated to be highly stable. Jemmis, E. D.; Chandrasekhar, J.; Würthwein, E.-U.; Schleyer, P. v. R.; Chinn, J. W., Jr.; Landro, F. J.; Lagow, R. J.; Luke, B.; Pople, J. A. J. Am. Chem. Soc., in press.

[^6]: (1) Issued as NRCC publication No. 20286.
 (2) Teranishi, H.; Benson, S. W. J. Am. Chem. Soc. 1963, 85, 2887-2890.
 (3) Griller, D.; Ingold, K. U. Int. J. Chem. Kinet. 1974, 6, 453-456.
 (4) Choo, K. Y.; Beadle, P. C.; Piskiewicz, L. W.; Golden, D. M. Int. J.

 Chem. Kinet. 1979, 11, 969-976.

